Skip to main content
Log in

Investigation of Hot Workability and Microstructure Evolution of VGCNFs-Reinforced Aluminum Matrix Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Isothermal compression experiments of vapor-grown carbon nanofiber (VGCNF)-reinforced aluminum matrix (VGCNF/Al) composites and pure aluminum (Al) were conducted at deformation temperatures from 573 K to 723 K and strain rates from 0.01 to 1 s−1. It was found that the VGCNF/Al composites and pure Al had depressed dynamic recrystallization percent in the high-power dissipation efficiency regions. Upon comparing the processing maps for different strains, it was found that the high-power dissipation efficiency regions of the VGCNF/Al composites and pure Al moved from the low strain rate region to the high strain rate region. The kernel average misorientation images showed that there were lots of low-angle grain boundaries in the high strain rate region. The low-angle grain boundaries did not have enough time to transform into high-angle grain boundaries, resulting in a depressed percentage of dynamic recrystallization. The addition of VGCNFs led to an increased low-angle grain boundary density. As a result, the phenomenon of high-power dissipation regions in the high strain rate regions correspond to the low percentage of dynamic recrystallization was more obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.S. Zhang, C.X. Wang, R. Guo, G.Q. Zhao, L. Chen: J. Alloys Compd., 2019, vol. 773, pp. 59-70.

    CAS  Google Scholar 

  2. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Man: Compos Part A: Appl Sci Manufac., 2017, vol. 94, pp. 189-198.

    CAS  Google Scholar 

  3. B. Liao, L.F. Cao, X.D. Wu, Y. Zou, G.J. Huang, P. Rometsch, J. Couper, Q. Liu: Mater., 2019, vol. 12, pp. 311-326.

    CAS  Google Scholar 

  4. Z.F. Xu, Y.B. Choi, K. Matsugi, D.C. Li, G. Sasak: Mater. Trans., 2009, vol. 9, pp. 2160-2164.

    Google Scholar 

  5. Z.F. Xu, Y.B. Choi, K. Matsugi, D.C. Li, G. Sasak: Mater. Trans., 2010, vol. 3, pp. 510-515.

    Google Scholar 

  6. K.C. Chang, Z.F. Xu, K. Matsugi, G. Sasaki: Mater. Trans., 2009, vol. 6, pp. 1510-1518.

    Google Scholar 

  7. Q.Y. Zhao, F. Yang, R. Torrens, L. Bolzoni: Mater. Des., 2019, vol. 169, pp. 1-16.

    CAS  Google Scholar 

  8. B.N. Sahoo, S.K. Panigrahi: J. Alloys Compd., 2019, vol. 776, pp. 865-882.

    CAS  Google Scholar 

  9. K.K. Wang, X.P. Li, Q.L. Li, G.G. Shu, G.Y. Tang: Mater. Sci. Eng. A, 2017, vol. 696, pp. 248-256.

    CAS  Google Scholar 

  10. Y.E. Tang, X.P. Guo: Metall. Trans. A, 2018, vol. 49, pp. 4884-4994.

    CAS  Google Scholar 

  11. J.P. Liu, G.L. Fan, Z.Q. Tian, Q. Guo, Y.S. Su, Z.Q. Li, D.B. Xiong: Compos Part A: Appl Sci Manufac., 2019, vol. 116, pp. 54-61.

    CAS  Google Scholar 

  12. M.M.H. Athar, R. Mahmudi: Mater. Sci. Eng. A, 2019, vol. 759, pp. 745-753.

    Google Scholar 

  13. L. Zhang, Q.D. Wang, G.P. Liu, W. Guo, H.Y. Jiang, W.J. Ding: Mater. Sci. Eng. A, 2017, vol. 707, pp. 315-324.

    CAS  Google Scholar 

  14. H.D. Zhang, Y. Liu, F. Zhang, D. Zhang, H.X. Zhu, T.X. Fan: Metall. Trans. A, 2018, vol. 49A, pp. 2202-2212.

    Google Scholar 

  15. P.L. Narayana, C.L. Li, J.K. Hong, S.W. Choi, C.H. Park, S.W. Kim, S.E. Kim, N.S. Reddy, J.T. Yeom: Met. Mater. Int., 2019, vol. 25, pp. 1063-1071.

    CAS  Google Scholar 

  16. G.W. Bo, F.L. Jiang, Z.Y. Dong, G. Wang, H. Zhang: Mater. Sci. Eng. A, 2019, vol. 755, pp. 147-157.

    CAS  Google Scholar 

  17. G. Wang, D.W. Bian, L.Y. Kou, X.J. Zhu: Mater. Res. Express, 2019, vol. 6, 096527.

    CAS  Google Scholar 

  18. M. Bambach, A. Emdadi, I. Sizova, U. Hecht, F. Pyczak: Intermetallics, 2018, vol. 101, pp. 44-55.

    CAS  Google Scholar 

  19. J.W. Lee, H.W. Son, S.K. Hyun: J. Alloys Compd., 2019, vol. 774, pp. 1081-1091.

    CAS  Google Scholar 

  20. Y.H. Duan, P. Li, L.S. Ma, R.Y. Li: Metall. Trans. A, 2017, vol. 48A, pp. 3419-3431.

    Google Scholar 

  21. N. Kaibo, Z.H. Zhu, K.K. Deng, T. Wang, J.G. Han: Nanomaterials, 2019, vol. 9, pp. 57-75.

    Google Scholar 

  22. L. Li, H. Li, W. Jiang, Z.Y. Pan, Y. Wang, T. Wang: JOM, 2019, vol. 71, pp. 2033-2039.

    CAS  Google Scholar 

  23. Y. Tong, G.Z. Quan, J. Zhao, Q. Liu, W. Xiong, R.J. Shi: Mater. Res., 2019, vol. 22, e20190131.

    Google Scholar 

  24. A. Łukaszek-Sołek, T. Śleboda, J. Krawczyk, S. Bednarek, M. Wojtaszek: J. Alloys Compd., 2019, vol. 797, pp. 174-184.

    Google Scholar 

  25. Q.H. Zang, H.S. Yu, Y.S. Lee, M.S. Kim, H.W. Kim: Mater. Charact., 2019, vol. 151, pp. 404-413.

    CAS  Google Scholar 

  26. T.Y. Kwak, W.J. Kim: J. Mater. Process. Technol., 2019, vol. 35, pp. 181-191.

    Google Scholar 

  27. Q.H. Zang, H.S. Yu, Y.S. Lee, M.S. Kim, H.W. Kim: J. Alloys Compd., 2018, vol. 763, pp. 25-33.

    CAS  Google Scholar 

  28. W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang, H. Yu: J. Mater. Process. Technol., 2019, vol. 35, pp. 1198-1209.

    Google Scholar 

  29. Y. Guo, X.G. Liu, Z.F. Xu, W.Q. Li, G. Sasaki: J. Alloys Compd., 2020, vol. 818, 152923.

    CAS  Google Scholar 

  30. K.P Rao, C. Dharmendra, K. Suresh, Y. Prasad, M. Gupta, Metals, 2018, vol. 8, pp. 699-712.

    Google Scholar 

  31. N. Li, C.Z. Zhao, Z.H. Jiang, H.X. Zhang: Mater. Charact., 2019, vol. 153, pp. 224-233.

    CAS  Google Scholar 

  32. N. Srinivasan, Y.V.R.K. Prasad: Metall. Trans. A, 1994, vol. 25, pp. 2275-2284.

    Google Scholar 

  33. Y.V.R.K. Prasad, K.P. Rao, M. Gupta: Compos. Sci. Technol., 2009, vol. 69, pp. 1070-1076.

    CAS  Google Scholar 

  34. A. Emdadi, I. Sizova, M. Bambach, U. Hecht: Intermetallics, 2019, vol. 109, pp. 123-134.

    CAS  Google Scholar 

  35. C.J. Zhang, Y.Z. Lian, Y.F. Chen, Y.G. Sun, S.Z. Zhang, H. Feng, Y.W. Zhou, P. Cao: Metals, 2019, vol. 9, pp. 481-495.

    Google Scholar 

  36. K. ZyguŁa, M. Wojtaszek, M. Lypchanskyi, T. Slebosa, G. KorpaŁa, U. Prahl: Metall. Trans. A, 2019, vol. 50A, pp. 5314-5323.

    Google Scholar 

  37. Q. Kang, H.T. Jiang, Z. Kuai, Y. Zhang, Y.J. Wang, Z.X. Cai: Mater. Res. Express, 2019, vol. 6, 086526.

    CAS  Google Scholar 

  38. K.K. Deng, J.C. Li, F.J. Xu, K.B. Nie, W. Liang: Mater. Des., 2015, vol. 67, pp. 72-81.

    CAS  Google Scholar 

  39. P. Xiao, Y.M. Gao, F.X. Xu, S.S. Yang, Y.F. Li, B. Li, S.Y. Zhao: J. Alloys Compd., 2019, vol. 798, pp. 1-11.

    CAS  Google Scholar 

  40. X.R. Chen, Z.M. Xu, D.F. Fu, H. Zhang, J. Teng, F.L. Jiang: Met. Mater. Int., 2020. https://doi.org/10.1007/s12540-019-00585-9.

    Article  Google Scholar 

  41. J.P. Sun, B.Q. Xu, Z.Q. Zhang, H. Zhou, J. Han, Y.N. Wu, D. Song, Y.C. Yuan, X.R. Zhou, H. Liu, A.B. Ma: J. Alloys Compd., 2020, vol. 817, 152688.

    CAS  Google Scholar 

  42. Q. Yang, D.L. Cheng, J. Liu,L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, G. Ji, H.W. Wang: Mater. Charact., 2019, vol. 155, 109834.

    CAS  Google Scholar 

  43. J.H. Zhang, J.M. Liu, D.S. Xu, J. Wu, L. Xu, R. Yang: J. Mater. Process. Technol., 2019, vol. 35, pp. 2513-2515.

    Google Scholar 

  44. W.W. Zhou, Y.C. Fan, X.P. Feng, K. Kikuchi, N. Nomura: Compos Part A: Appl Sci Manufac., 2018, vol. 112, pp. 168-177.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Nation Natural Science Foundation of China (Grant Nos. 51575475 and 51675465). This study was partly supported by JSPS KAKENHI Grant No. 18K03840 and the Light Metal Educational Foundation in Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-gang Liu or Zhe-feng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 9, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, Xg., Shi, Xs. et al. Investigation of Hot Workability and Microstructure Evolution of VGCNFs-Reinforced Aluminum Matrix Composites. Metall Mater Trans A 51, 4100–4112 (2020). https://doi.org/10.1007/s11661-020-05834-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05834-w

Navigation