Skip to main content
Log in

Mechanical Property of M40Jf/5A06Al Composite at Elevated Temperatures

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, aluminum alloy with a high concentration of magnesium (5A06) was reinforced with 55 vol% unidirectional ultra-high modulus and highly graphitized carbon fiber (M40J) using pressure infiltration method. The effect of temperature on the bending strength of the Cf/Al composites was investigated from room temperature to 500 °C. The experimental results showed that the strength of M40Jf/5A06Al composites was not affected by temperature from room temperature to 200 °C. The bending strength of the composite at 300 °C was decreased by 30% compared with that at room temperature. In order to evaluate the extent of interface weakening, the length of fiber pullout was measured. The results showed that the pullout length reached the maximum at 300 and 500 °C, which indicated weak interface at the corresponding temperature. The DSC curve presented obvious heat absorption peak at around 300 °C, which may be attributed to the dissolution of the interfacial product β (Al3Mg2) phases at the C/Al interface. The bending fracture surfaces of the composites after three-point bending tests were observed by SEM, plastic-viscous flow of the matrix were observed at the samples tested at 500 °C. The predominant mechanisms for high-temperature damage of M40Jf/5A06Al composites are matrix softening caused by dislocation recovery and interface weakening caused by the dissolution of interfacial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Aidun, P. Martin, J. Sun, J. Mater. Eng. Perform. 1, 463 (1992)

    Article  Google Scholar 

  2. A. Daoud, Mater. Sci. Eng., A 391, 114 (2005)

    Article  Google Scholar 

  3. Y.H. Zhang, G.H. Wu, Trans. Nonferrous Met. Soc. China 20, 2148 (2010)

    Article  Google Scholar 

  4. T. Fujita, M.J. Pindera, C.T. Herakovich, ASTM Spec. Technol. Publ. STP 1080, 165 (1990)

    Google Scholar 

  5. M. Yang, V.D. Scott, Carbon 29, 877 (1991)

    Article  Google Scholar 

  6. M.H. Vidal-Setif, M. Lancin, C. Marhic, R. Valle, J.L. Raviart, J.C. Daux, M. Rabinovitch, Mater. Sci. Eng., A 272, 321 (1999)

    Article  Google Scholar 

  7. H.D. Steffens, B. Reznik, V. Kruzhanov, J. Mater. Sci. 32, 5413 (1997)

    Article  Google Scholar 

  8. H.G. Seong, H.F. Lopez, D.P. Robertson, P.K. Rohatgi, Mater. Sci. Eng., A 487, 201 (2008)

    Article  Google Scholar 

  9. G.H. Wu, J. Su, H.S. Gou, Z.Y. Xiu, L.T. Jiang, J. Mater. Sci. 44, 4776 (2009)

    Article  Google Scholar 

  10. M. Lancin, C. Marhic, J. Eur. Ceram. Soc. 20, 1493 (2000)

    Article  Google Scholar 

  11. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Loffler, P.J. Uggowitzer, Mater. Sci. Eng., A 448, 1 (2007)

    Article  Google Scholar 

  12. H. Nayeb-Hashemi, J. Seyyedi, Metall. Trans. A 20, 727 (1989)

    Article  Google Scholar 

  13. S.H. Li, C.G. Chao, Metall. Mater. Trans. A 35, 2153 (2004)

    Article  Google Scholar 

  14. X. Wang, D.M. Jiang, G.H. Wu, B. Li, P.Z. Li, Mater. Sci. Eng., A 497, 31 (2008)

    Article  Google Scholar 

  15. C.C. Wang, G.Q. Chen, X. Wang, Y.H. Zhang, W.S. Yang, G.H. Wu, Metall. Mater. Trans. A 43, 2012 (2012)

    Article  Google Scholar 

  16. H. Akbulut, M. Durman, Mater. Sci. Eng., A 262, 214 (1999)

    Article  Google Scholar 

  17. W.S. Lee, W.C. Sue, C.F. Lin, Compos. Sci. Technol. 60, 1975 (2000)

    Article  Google Scholar 

  18. Y. Kagawa, E. Nakata, J. Mater. Sci. Lett. 11, 176 (1992)

    Article  Google Scholar 

  19. N.L. Han, Z.G. Wang, L.Z. Sun, Scr. Metall. Mater. 32, 1739 (1995)

    Article  Google Scholar 

  20. N.L. Han, Z.G. Wang, G.D. Zhang, Compos. Sci. Technol. 57, 1491 (1997)

    Article  Google Scholar 

  21. W.D. Fei, H.Y. Yue, L.D. Wang, Mater. Chem. Phys. 119, 515 (2010)

    Article  Google Scholar 

  22. G.Z. Kang, C. Yang, J.X. Zhang, J. Mater. Sci. Technol. 18, 257 (2002)

    Google Scholar 

  23. L.H. Qi, J. Liu, J.T. Guan, J.M. Zhou, H.J. Li, Compos. Sci. Technol. 72, 1774 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51301053) and Key Laboratory Fund of Harbin Institute of Technology in China (No. 5780011513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Tao Jiang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DG., Chen, GQ., Jiang, LT. et al. Mechanical Property of M40Jf/5A06Al Composite at Elevated Temperatures. Acta Metall. Sin. (Engl. Lett.) 28, 1175–1182 (2015). https://doi.org/10.1007/s40195-015-0310-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0310-0

Keywords

Navigation