Skip to main content

Advertisement

Log in

Mesoscopic-Scale Numerical Simulation Including the Influence of Process Parameters on SLM Single-Layer Multi-pass Formation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a metal additive manufacturing technology that directly forms three-dimensional complex components according to digital models via layer-by-layer addition. It has been widely used in medical personalization, aerospace, and other fields. To analyze the influence of different process parameters, such as the line energy density and hatch space on the SLM single-layer multi-pass formation process, a random particle distribution of the powder bed was first obtained via the open-source discrete element method (DEM) code Yade. The prediction model of the molten pool dynamic behavior during the SLM formation process was then established based on the “metal-gas” two-phase flow model. The conservation equation considered thermal factors, such as the Marangoni effect, the porosity in the mushy zone, and the gasification phenomenon. Laser energy was then applied by the body heat source model, which directly tracked the metal-phase surface affected by the laser in real time and applied energy to the metal-phase elements within a certain thickness. By analyzing the simulation results, it was found that to obtain a good formation zone in actual SLM production for 316L stainless steel, from the perspective of controlling line energy density, 200 J/m should be used to obtain a relatively flat solidified track and to establish a good connection with the substrate or the upper formation layer; from the perspective of controlling the hatch space, 45 μm should be used to ensure a good connection between adjacent solidified tracks, a relatively flat formation surface, and high production efficiency. These conclusions were consistent with the experimental results. This article offers a scientific rationale for parameter selection during the SLM formation process of 316L stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. C. Zitelli, P. Folgarait, A. D. Schino: Metals, 2019, vol. 9, no. 7, art. no. 731.

    CAS  Google Scholar 

  2. J. L. Zhang, B. Song, Q. S. Wei, D. Bourell, Y. S. Shi: J. Mater. Sci. Technol., 2019, vol. 35, no. 2, pp. 270-284.

    Google Scholar 

  3. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, D. Trimble: Int. J. Mach. Tool. Manu., 2018, vol. 128, pp. 1-20.

    Google Scholar 

  4. S. Shrestha, T. Starr, K. Chou: J. Manuf. Sci. E., 2018, vol. 141, no. 7, art. no. 071004.

    Google Scholar 

  5. M. Grasso, A. G. Demir, B. Previtali, B. M. Colosimo: Robot. Com.-Int. Manuf., 2018, vol. 49, pp. 229-239.

    Google Scholar 

  6. C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, P. D. Lee: Nat. Commun., 2018, vol. 9, no. 1, art. no. 1355.

    Google Scholar 

  7. R. Laquai, B. R. Müller, G. Kasperovich, J. Haubrich, G. Requena, G. Bruno: Mater. Res. Lett., 2018, vol. 6, no. 2, pp. 130-135.

    CAS  Google Scholar 

  8. B. AlMangour, D. Grzesiak, T. Borkar, J. M. Yang: Mater. Design, 2018, vol. 138, pp. 119-128.

    CAS  Google Scholar 

  9. D. H. Dai, D. D. Gu, H. Zhang, J. P. Xiong, C. L. Ma, C. Hong, R. Poprawe: Opt. Laser Technol., 2018, vol. 99, pp. 91-100.

    CAS  Google Scholar 

  10. W. T. Shi, P. Wang, Y. D. Liu, Y. J. Hou, G. L. Han: Powder Technol., 2020, vol. 360, pp. 151-164.

    CAS  Google Scholar 

  11. J. W. Liu, Y. N. Song, C. Y. Chen, X. B. Wang, H. Li, C. A. Zhou, J. Wang, K. Guo, J. Sun: Mater. Design, 2020, vol. 186, art. no. 108355.

    CAS  Google Scholar 

  12. O. O. Salman, F. Brenne, T. Niendorf, J. Eckert, K. G. Prashanth, T. He, S. Scudino: J. Manuf. Process., 2019, vol. 45, pp. 255-261.

    Google Scholar 

  13. Z. Y. Zhang, B. B. Chu, L. Wang, Z. H. Lu: J. Alloy. Compd., 2019, vol. 791, 166-75.

    CAS  Google Scholar 

  14. M. Laleh, A. E. Hughes, W. Xu, I. Gibson, M. Y. Tan: Corros. Sci., 2019, vol. 155, pp. 67-74.

    CAS  Google Scholar 

  15. T. Larimian, M. Kannan, D. Grzesiak, B. AlMangour, T. Borkar: Mater Sci. Eng. A, 2020, vol. 770, art. no. 138455.

    CAS  Google Scholar 

  16. Y. Yang, Y. Zhu, M. M. Khonsari, H. Yang: Wear, 2019, vol. 428, pp. 376-386.

    Google Scholar 

  17. S. L. Sing, F. E. Wiria, W. Y. Yeong: Robot. Com.-Int. Manuf., 2018, vol. 49, pp. 170-180.

    Google Scholar 

  18. Z. F. Xiao, Y. Q. Yang, R. Xiao, Y. C. Bai, C. H. Song, D. Wang: Mater. Design, 2018, vol. 143, pp. 27-37.

    CAS  Google Scholar 

  19. O. O. Salman, C. Gammer, J. Eckert, M. Z. Salih, E. H. Abdulsalam, K. G. Prashanth, S. Scudino: Mater. Today Commun., 2019, vol. 21, art. no. 100615.

    CAS  Google Scholar 

  20. Z. Y. Zhao, J. Li, P. K. Bai, H. Q. Qu, M. J. Liang, H. H. Liao, L. Y. Wu, P. C. Huo, H. Liu, J. X. Zhang: Metals, 2019, vol. 9, no. 2, art. no. 267.

    CAS  Google Scholar 

  21. T. L. Zhong, K. T. He, H. X. Li, L. C. Yang: Mater. Design, 2019, vol. 181, art. no. 108076.

    CAS  Google Scholar 

  22. C. Wei, Z. Sun, Q. Chen, Z. Liu, L. Li: J. Manuf. Sci. E., 2019, vol. 141, no. 8, art. no. 081014.

    Google Scholar 

  23. A. A. Martin, N. P. Calta, S. A. Khairallah, J. Wang, P. J. Depond, A. Y. Fong, V. Thampy, G. M. Guss, A. M. Kiss, K. H. Stone: Nat. Commun., 2019, vol. 10, no. 1, art. no. 1987.

    Google Scholar 

  24. S. L. Sing, F. E. Wiria, W. Y. Yeong: Int. J. Refract. Met. H., 2018, vol. 77, pp. 120-127.

    CAS  Google Scholar 

  25. O. Andreau, I. Koutiri, P. Peyre, J. Penot, N. Saintier, E. Pessard, T. D. Terris, C. Dupuy, T. Baudin: J. Mater. Process. Tech., 2019, vol. 264, pp. 21-31.

    CAS  Google Scholar 

  26. M. M. Francois, A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson, C. K. Newman, T. Haut, J. Bakosi: Curr. Opin. Solid St. M., 2017, vol. 21, pp. 198-206.

    CAS  Google Scholar 

  27. Y. L. Li, K. Zhou, P. F. Tan, S. B. Tor, C. K. Chua, K. F. Leong: Int. J. Mech. Sci., 2018, vol. 136, pp. 24-35.

    Google Scholar 

  28. S. Roy, M. Juha, M. S. Shephard, A. M. Maniatty: Comput. Mech., 2018, vol. 62, no. 3, pp. 273-284.

    Google Scholar 

  29. B. Ahmad, S. O. V. D. Veen, M. E. Fitzpatrick, H. Guo: Addit. Manuf., 2018, vol. 22, pp. 571-582.

    CAS  Google Scholar 

  30. Y. C. Wu, C. H. San, C. H. Chang, H. J. Lin, R. Marwan, S. Baba, W. S. Hwang: J. Mater. Process. Tech., 2018, vol. 254, pp. 72-78.

    Google Scholar 

  31. S. W. Liu, H. H. Zhu, G. Y. Peng, J. Xin, X. Y. Zeng: Mater. Design, 2018, vol. 142, pp. 319-328.

    CAS  Google Scholar 

  32. H. C. Tran, Y. L. Lo: J. Mater. Process. Tech., 2018, vol. 255, pp. 411-425.

    Google Scholar 

  33. L. Cao, X. F. Yuan: Materials, 2019, vol. 12, no. 14, art. no. 2272.

    CAS  Google Scholar 

  34. T. Bartel, I. Guschke, A. Menzel: Comput. Math. Appl., 2019, vol. 78, no. 7, pp. 2267-2281.

    Google Scholar 

  35. Z. K. Wang, W. T. Yan, W. K. Liu, M. B. Liu: Comput. Mech., 2019, vol. 63, no. 4, pp. 649-661.

    Google Scholar 

  36. C. Panwisawas, C. L. Qiu, M. J. Anderson, Y. Sovani, R. P. Turner, M. M. Attallah, J. W. Brooks, H. C. Basoalto: Comp. Mater. Sci., 2017, vol. 126, pp. 479-490.

    CAS  Google Scholar 

  37. Q. Q. Han, H. Gu, R. Setchi: Powder Technol., 2019, vol. 352, pp. 91-102.

    CAS  Google Scholar 

  38. E. J. R. Parteli, T. Pöschel: Powder Technol., 2016, vol. 288, pp. 96-102.

    CAS  Google Scholar 

  39. S. A. Khairallah, A. T. Anderson, A. Rubenchik, W. E. King: Acta Mater., 2016, vol. 108, pp. 36-45.

    CAS  Google Scholar 

  40. M. J. Xia, D. D. Gu, G. Q. Yun, D. H. Dai, H. Y. Chen, Q. M. Shi: Int. J. Mach. Tool. Manu., 2017, vol. 116, pp. 96-106.

    Google Scholar 

  41. W. Nan, M. Ghadiri: Powder Technol., 2019, vol. 342, pp. 801-807.

    CAS  Google Scholar 

  42. C. Tang, J. L. Tan, C. H. Wong: Int. J. Heat Mass Tran., 2018, vol. 126, pp. 957-968.

    CAS  Google Scholar 

  43. L. Cao: Int. J. Heat Mass Tran., 2019, vol. 141, pp. 1036-1048.

    Google Scholar 

  44. A. Albaba, S. Lambert, F. Nicot, B. Chareyre: Granul. Matter, 2015, vol. 17, no. 5, pp. 603-616.

    CAS  Google Scholar 

  45. L. Cao: Int. J. Adv. Manuf. Tech., 2019, vol. 105, pp. 2253-2269.

    Google Scholar 

  46. L. Cao, D. M. Liao, F. Sun, T. Chen, Z. H. Teng, Y. L. Tang: Int. J. Adv. Manuf. Tech., 2017, vol. 94, pp. 807-815.

    Google Scholar 

  47. L. Cao, F. Sun, T. Chen, Z. H. Teng, Y. L. Tang, D. M. Liao: Acta Metall. Sin., 2017, vol. 53, no. 11, pp. 1521-1531.

    CAS  Google Scholar 

  48. R. D. Li, J. H. Liu, Y. S. Shi, L. Wang, W. Jiang: Int. J. Adv. Manuf. Tech., 2012, vol. 59, no. 9-12, pp. 1025-1035.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2019A1515012040) and the Research Platform Construction Funding of Advanced Institute of Engineering Science for Intelligent Manufacturing, Guangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 19, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L. Mesoscopic-Scale Numerical Simulation Including the Influence of Process Parameters on SLM Single-Layer Multi-pass Formation. Metall Mater Trans A 51, 4130–4145 (2020). https://doi.org/10.1007/s11661-020-05831-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05831-z

Navigation