Skip to main content
Log in

Fabrication of Wear-Resistant Ti3AlC2/Al3Ti Hybrid Aluminum Composites by Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites have potential as wear-resistant materials. However, synthesizing these nanocomposites by conventional molten state methods result in agglomeration of reinforcements. To mitigate this issue, in the current study hybrid aluminum nanocomposites were synthesized using friction stir processing (FSP). For this, two blends of titanium and graphite particles were used as reinforcements. These composites were characterized using a stereo microscope, scanning electron microscope, electron probe micro analyzer, X-ray diffraction, and microhardness indenter. During FSP, ternary carbide (Ti3AlC2) and intermetallic (AlTi3) were formed in situ. These compounds improved the hardness of the composites up to four times. Further, these in situ composites were subjected to wear test using pin-on-disk tribometer at various sliding speeds. Polycrystalline alumina disks were chosen as counterface to minimize chemically induce wear. The wear rate of the composites was 5 to 13 times lower than that of the base metal. This excellent resistance to wear in composites was attributed to improved resistance to abrasion and delamination. Furthermore, it was seen that the dominant wear mechanism of the composites changed from abrasive to adhesive wear as the sliding speed increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. A Heinz, A Haszler, C Keidel, S Moldenhauer, R Benedictus and WS Miller, Materials Science and Engineering: A 2000, vol. 280, pp. 102-107.

    Google Scholar 

  2. P. M. Colegrove, D. Graham, and T. Miller: Symp. On Friction Stir Welding, 2000.

  3. Michael Skillingberg and John Green, LIGHT METAL AGE-CHICAGO- 2007, vol. 65, p. 8.

    Google Scholar 

  4. J. Baumeister, J. Banhart and M. Weber, Materials & design 1997, vol. 18, pp. 217-220.

    CAS  Google Scholar 

  5. SR Anvari, F Karimzadeh and MH Enayati, Wear 2013, vol. 304, pp. 144-151.

    CAS  Google Scholar 

  6. P. Ajay-Kumar, R. Raj and S. V. Kailas, Materials and Design 2015, vol. 85, pp. 626-634.

    CAS  Google Scholar 

  7. F. E. Kennedy, A. C. Balbahadur and D. S. Lashmore, Wear 1997, vol. 203-204, pp. 715-721.

    Google Scholar 

  8. RS Mishra, ZY Ma, I Charit, Mater. Sci. Eng. A 2003, vol. 341, pp. 307-310.

    Google Scholar 

  9. I. Charit and R. S. Mishra, Acta Materialia 2005, vol. 53, pp. 4211-4223.

    CAS  Google Scholar 

  10. Devinder Yadav and Ranjit Bauri, Mater. Sci. Eng. A 2011, vol. 528, pp. 1326-1333.

    Google Scholar 

  11. Jie Fei, Dan Luo, Chao Zhang, Hejun Li, Yali Cui and Jianfeng Huang, Tribology International 2018, vol. 119, pp. 230-238.

    CAS  Google Scholar 

  12. M. Sarkari-Khorrami, M. Kazeminezhad, and A.H. Kokabi, Metallurgical and Materials Transactions A 2015, vol. 46, pp. 2021-2034.

    Google Scholar 

  13. R Acuña, MJ Cristóbal, CM Abreu and M Cabeza, Metall. Mater. Trans. A 2019, vol. 50, pp. 2860-2874.

    Google Scholar 

  14. V. Kumar, S. Jain, and S. Muthukumaran, Metall. Mater. Trans. A 2019, vol. 50, pp. 2933-2944.

    Google Scholar 

  15. A Shafiei-Zarghani, SF Kashani-Bozorg and A Zarei-Hanzaki, Mater. Sci. Eng. A 2009, vol. 500, pp. 84-91.

    Google Scholar 

  16. C.F. Chen, P.W. Kao, L.W. Chang and N.J. Ho, Metall. Mater. Trans. A 2010, vol. 41, pp. 513-522.

    CAS  Google Scholar 

  17. Y. Mazaheri, F. Karimzadeh and M. H. Enayati, Metall. Mater. Trans. A 2014, vol. 45, pp. 2250-2259.

    Google Scholar 

  18. P. Asadi, R. A. Mahdavinejad and S. Tutunchilar, Mater. Sci. Eng. A 2011, vol. 528, pp. 6469-6477.

    CAS  Google Scholar 

  19. Sie Chin Tjong, Materials Science and Engineering: R: Reports 2013, vol. 74, pp. 281-350.

    Google Scholar 

  20. H. Sarmadi, A. H. Kokabi and S. M. Seyed-Reihani, Wear 2013, vol. 304, pp. 1-12.

    CAS  Google Scholar 

  21. SA Alidokht, A Abdollah-Zadeh, S Soleymani and H Assadi, Materials & Design 2011, vol. 32, pp. 2727-2733.

    CAS  Google Scholar 

  22. A. Mostafapour-Asl and S. T. Khandani, Mater. Sci. Eng. A 2013, vol. 559, pp. 549-557.

    CAS  Google Scholar 

  23. RA Prado, LE Murr, KF Soto and JC McClure, Mater. Sci. Eng. A 2003, vol. 349, pp. 156-165.

    Google Scholar 

  24. CJ Hsu, PW Kao and NJ Ho, Scripta Materialia 2005, vol. 53, pp. 341-345.

    CAS  Google Scholar 

  25. Q. Zhang, B. L. Xiao and Z. Y. Ma, Intermetallics 2013, vol. 40, pp. 36-44.

    Google Scholar 

  26. CJ Hsu, PW Kao and NJ Ho, Materials Letters 2007, vol. 61, pp. 1315-1318.

    CAS  Google Scholar 

  27. H. C. Madhu, P. Ajay-Kumar, C. S. Perugu, S.V. Kailas, Journal of Materials Engineering and Performance 2018, vol. 27, pp. 1318-1326.

    CAS  Google Scholar 

  28. GL You, NJ Ho and PW Kao, Materials Letters 2013, vol. 90, pp. 26-29.

    CAS  Google Scholar 

  29. Shamiparna Das, Nelson Y. Martinez, Rajiv S. Mishra, Glenn J. Grant and Saumyadeep Jana, Metall. Mater. Trans. A 2017, vol. 48, pp. 2115-2119.

    CAS  Google Scholar 

  30. A. Kumar, D. Yadav, C.S. Perugu, S.V Kailas, Materials & Design 2017, vol. 113, pp. 99-108.

    Google Scholar 

  31. S. Dixit, A. Mahata, D. R. Mahapatra, S.V. Kailas, K. Chattopadhyay, Composites B 2018, vol. 136, pp. 63-71.

    CAS  Google Scholar 

  32. P. Ajay-Kumar, H.C. Madhu, A. Pariyar, C.S. Perugu, S.V. Kailas, U. Garg, P. Rohatgi, Mater. Sci. Eng. A 2020, vol. 769, p. 138517.

    CAS  Google Scholar 

  33. M. J. Ghazali, W. M. Rainforth and H. Jones, Wear 2005, vol. 259, pp. 490-500.

    CAS  Google Scholar 

  34. M. J. Ghazali, W. M. Rainforth and H. Jones, Tribology International 2007, vol. 40, pp. 160-169.

    CAS  Google Scholar 

  35. Judy Schneider, Ronald Beshears and Arthur C. Nunes, Mater. Sci. Eng. A 2006, vol. 435-436, pp. 297-304.

    Google Scholar 

  36. S. Dixit, H. C. Madhu, S. V. Kailas and K. Chattopadhyay, International Journal of Advanced Manufacturing Technology 2017, 91, pp. 9–12.

    Google Scholar 

  37. A. Kar, S. Suwas, S.V. Kailas, JOM 2019, vol. 71, pp. 444-451.

    CAS  Google Scholar 

  38. L. Xu, Y. Y. Cui, Y. L. Hao and R. Yang, Mater. Sci. Eng. A 2006, vol. 435-436, pp. 638-647.

    Google Scholar 

  39. Q. Zhang, B. L. Xiao, Q. Z. Wang and Z. Y. Ma, Metall. Mater. Trans. A 2014, vol. 45, pp. 2776-2791.

    Google Scholar 

  40. X. H. Wang and Y. C. Zhou, Journal of Materials Science & Technology 2010, vol. 26, pp. 385-416.

    Google Scholar 

  41. CJ Hsu, CY Chang, PW Kao, NJ Ho and CP Chang, Acta Materialia 2006, vol. 54, pp. 5241-5249.

    CAS  Google Scholar 

  42. C.J. Smithells, Smithells Metals Reference Book, Elsevier Butterworth-Heinemann, Boston, 2004.

    Google Scholar 

  43. N. V. Tzenov and M. W. Barsoum, Journal of the American Ceramic Society 2000, vol. 83, pp. 825-832.

    CAS  Google Scholar 

  44. X. H. Wang and Y. C. Zhou, Acta Materialia 2002, vol. 50, pp. 3141-3149.

    CAS  Google Scholar 

  45. Z. Ge, K. Chen, J. Guo, H. Zhou, J. M. F. Ferreira, Journal of the European Ceramic Society 2003, vol. 23, pp. 567-574.

    CAS  Google Scholar 

  46. N. Shahin, Sh Kazemi and A. Heidarpour, Advanced Powder Technology 2016, vol. 27, pp. 1775-1780.

    CAS  Google Scholar 

  47. Chunqing Peng, Chang-An Wang, Yang Song and Yong Huang, Mater. Sci. Eng. A 2006, vol. 428, pp. 54-58.

    Google Scholar 

  48. RL Deuis, C Subramanian and JM Yellup, Composites Science and Technology 1997, vol. 57, pp. 415-435.

    CAS  Google Scholar 

  49. A.T. Alpas, J. Zhang, Wear 1992, vol. 155, pp. 83-104.

    CAS  Google Scholar 

  50. Yoshimi Watanabe, Noboru Yamanaka and Yasuyoshi Fukui, Metall. Mater. Trans. A 1999, vol. 30, pp. 3253-3261.

    CAS  Google Scholar 

  51. M. Nofar, H. R. Madaah-Hosseini and N. Kolagar-Daroonkolaie, Materials & Design 2009, vol. 30, pp. 280-286.

    CAS  Google Scholar 

  52. S. C. Lim and M. F. Ashby, Acta Metallurgica 1987, vol. 35, pp. 1-24.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge support from the Department of Materials Engineering at the Indian Institute of Science, Bengaluru, to carry out XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Madhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 24, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu, H.C., Edachery, V., Lijesh, K.P. et al. Fabrication of Wear-Resistant Ti3AlC2/Al3Ti Hybrid Aluminum Composites by Friction Stir Processing. Metall Mater Trans A 51, 4086–4099 (2020). https://doi.org/10.1007/s11661-020-05821-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05821-1

Navigation