Skip to main content

Advertisement

Log in

Achievement of High Ductility and Ultra-high Strength of V-Nb Microalloyed Spring Steel by Austempered Multiphase Microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A V-Nb microalloyed spring steel was investigated through a series of austempering heat treatments. Optimal properties were obtained after austempering at 240 °C for 2 hours because of the good coordination of multiphase martensitic/bainite, filmy retained austenite and fine carbides. The tensile strength was 2239 MPa and the total elongation was 16.1 pct. With an increase in temperature, the matrix changed from martensite to bainite. The volume fraction of retained austenite decreased from 13.7 pct at 240 °C to 9.6 pct at 280 °C and then increased to a maximum of 19.2 pct at 360 °C. The tensile strength remained above 1500 MPa and the impact energy increased to 30 J. MC carbides formed in martensite lathes and ɛ- or θ-type carbides with acicular nanoscale were precipitated in bainite lathes at a low temperature. MC- and M3C-type precipitated in bainite lathes at high temperature. Samples that were subjected to a low isothermal temperature had a high strain-hardening rate before necking, whereas samples at a high isothermal temperature could exert a TRIP effect for a long time. After stretching to fracture, a hierarchical nanotwinned structure and many shear cells formed, which enhanced the austempered sample ductility and toughness at 360 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Goulas, A. Kumar, M.G. Mecozzi, F.M. Castro-Cerda, M. Herbig, R.H. Petrov, and J. Sietsmab: Mater. Charact., 2019, vol. 152, pp. 67-75.

    CAS  Google Scholar 

  2. B. Podgornik, V. Leskovšek, M. Godec, and B. Senčič: Mater. Sci. Eng. A, 2014, vol. 599, pp. 81-86.

    CAS  Google Scholar 

  3. Y.B. Liu, W. Zhang, Q. Tong, and L.F. Wang: ISIJ Int., 2014, vol. 54, pp. 1920-26.

    CAS  Google Scholar 

  4. C.L. Zhang, Y.Z. Liu, L.Y. Zhou, C. Jiang, and J.F. Xiao: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 116-21.

    CAS  Google Scholar 

  5. S. A. Choi, Ph.D. thesis, 2011, Delft University of Technology, Delft. http://resolver.tudelft.nl/uuid:7ab34006-2323-4779-8ea9-b08e0e43f213. Accessed 31 Jan 2011.

  6. H.K.D.H. Bhadeshia: Mater. Sci. Forum., 2005, vol. 500-501, pp. 63-74.

    Google Scholar 

  7. Z.J. Xie, Y.Q. Ren, W.H. Zhou, J.R. Yang, C.J. Shang, R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 603, pp. 69-75.

    CAS  Google Scholar 

  8. S.H. Kim, K.H. Kim, C.M. Bae, J.S. Lee, and D.W. Suh: Met. Mater. Int., 2018, vol. 24, pp. 693-01.

    CAS  Google Scholar 

  9. T. Fukuzumi, S. Komazaki, and T. Misawa: J. Iron Steel Inst. Jpn., 2002, vol. 88, pp. 81-87.

    CAS  Google Scholar 

  10. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-22.

    CAS  Google Scholar 

  11. Z. Wang, and M.X. Huang: Metall. Mater. Trans. A,.2019, vol. 50. pp. 5650-55.

    CAS  Google Scholar 

  12. N. Zhong, X.D. Wang, L. Wang, and Y.H. Rong: Mater. Sci. Eng. A, 2009, vol. 506, pp. 111-16.

    Google Scholar 

  13. Y. Li, W. Li, W.Q. Liu, X.D. Wang, X.M. Hua, H.B Liu, and X.J. Jin: Acta Mater., 2018, vol. 146, pp. 126-41.

    CAS  Google Scholar 

  14. T.Y. Hsu, X.J. Jin, and Y.H. Rong: J. Alloy Compd., 2013, vol. 577S, pp. S568-71.

    Google Scholar 

  15. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, and B.Z. Bai: Acta Mater., 2014, vol. 76, pp. 425-33.

    CAS  Google Scholar 

  16. K.K. Wang, Z.L. Tan, G.H. Gao, B. Gao, X.L. Gui, R.D.K. Misra, and B.Z. Bai: Mater. Sci. Eng. A, 2016, vol. 675, pp. 120-27.

    CAS  Google Scholar 

  17. D. Mandal, M. Ghosh, J. Pal, S.G. Chowdhury, G. Das, S.K. Das, and S. Ghosh: Mater. Design, 2014, vol. 54, pp. 831-37.

    CAS  Google Scholar 

  18. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 25-34.

    Google Scholar 

  19. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. St. M., 2004, vol. 8, pp. 219-37.

    CAS  Google Scholar 

  20. J. Dong, X.S. Zhou, Y.C Liu, C. Li, C.X. Liu, and H.J. Li: Mater. Sci. Eng. A, 2017, vol. 690, pp. 283-93.

    CAS  Google Scholar 

  21. M.G. Ou, C.L. Yang, J. Zhu, Q.F. Xia, and H.N. Qiao: J. Alloy Compd., 2017, vol. 697, pp. 43-54.

    Google Scholar 

  22. H.P. Liu, X.W. Lu, X.J. Jin, H. Dong, and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749-52.

    CAS  Google Scholar 

  23. B. Avishan, M. Tavakolian, and S. Yazdani: Mater. Sci. Eng. A, 2017, vol. 693, pp. 178-85.

    CAS  Google Scholar 

  24. J.B. Seol, D. Raabe, P.P. Choi, Y.R. Im, and C.G. Park: Acta Mater., 2012, vol. 60, pp. 6183-99.

    CAS  Google Scholar 

  25. H.F. Lan, L.X. Du, Q. Li, C.L. Qiu, J.P. Li, and R.D.K. Misra: J. Alloy Compd., 2017, vol. 710, pp. 702-10.

    CAS  Google Scholar 

  26. D. Kim, S.J. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4967-83.

    CAS  Google Scholar 

  27. K. Chen, Z.H. Jiang, F.B. Liu, J. Yu. Y. Li, W. Gong, and C.Y. Chen: Mater. Sci. Eng. A, 2019, vol. 766, 138272..

    CAS  Google Scholar 

  28. S. Yan, X.H. Liu, W.J. Liu, H.F. Lan, and H.Y. Wu: Mater. Sci. Eng. A, 2015, vol. 620, pp. 58-66.

    Google Scholar 

  29. M. Karam-Abian, A. Zarei-Hanzaki, H.R. Abedi, and S. Heshmati-Manesh: Mater. Sci. Eng. A, 2016, vol. 651, pp. 233-40.

    CAS  Google Scholar 

  30. J.L. Zhao, B. Lv, F.C. Zhang, Z.N. Yang, L.H. Qian, C. Chen, and X.Y Long: Mater. Sci. Eng. A, 2019, vol. 742, pp. 179-89.

    Google Scholar 

  31. Y.J Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, and H.J. Gao: Nat. Commun., 2014, vol. 5, pp. 3580-07.

    Google Scholar 

  32. J.Y. Meng, Y. Feng, Q. Zhou, L.J. Zhao, F.C. Zhang, and L.H. Qian: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3068-76.

    CAS  Google Scholar 

  33. B. Avishan, S. Yazdani, and S.H. Nedjad: Mater. Sci. Eng. A, 2012, vol. 548, pp. 106-11.

    CAS  Google Scholar 

  34. H. Mousalou, S. Yazdani, B. Avishan, N.P. Ahmadi, A. Chabok, and Y.T. Pei: Mater. Sci. Eng. A, 2018, vol. 734, pp. 329-37.

    CAS  Google Scholar 

  35. Z. Lawrynowicz: Mater. Sci. and Tech., 2002, vol. 18, pp. 1322-24.

    CAS  Google Scholar 

  36. W. Song, J. Von Appen, P. Choi, R. Dronskowski, D. Raabe, and W. Bleck: Acta Mater., 2013, vol. 61, pp. 7582-90.

    CAS  Google Scholar 

  37. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215-28.

    CAS  Google Scholar 

  38. S.B. Singh, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1998, vol. 245, pp. 72-79.

    Google Scholar 

  39. S. Zhang, and K.O. Findley: Acta Mater., 2013, vol. 61, pp. 1895-03.

    CAS  Google Scholar 

  40. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira: Mater. Sci. Eng. A, 2012, vol. 549, pp. 185-92.

    CAS  Google Scholar 

  41. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia: Scripta Mater., 2013, vol. 69, pp. 409-12.

    CAS  Google Scholar 

  42. F.C. Zhang, T.S. Wang, P. Zhang, C.L. Zheng, B. Lv, M. Zhang and Y.Z. Zheng: Scripta Mater., 2008, vol. 59, pp. 294-96.

    CAS  Google Scholar 

  43. S.W. Qin, Y. Liu, Q.G. Hao, Y, Wang, N.L. Chen, X.W. Zuo, and Y.H. Rong: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4047-55.

    CAS  Google Scholar 

  44. C.Y. Liu, X.J Di, C.X. Chen, X.J. Guo, and Z.K. Xue: J. Mater. Sci., 2015, vol. 50, pp. 5079-90.

    CAS  Google Scholar 

  45. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata: ISIJ Int., 2010, vol. 50, pp. 875-82.

    CAS  Google Scholar 

  46. E. Keehan, L. Karlsson, and H.O. Andrén: Sci. Technol. of Weld. Joi., 2006, vol. 11, pp. 1-8.

    CAS  Google Scholar 

  47. Z.Z. Zhao, H.X. Yin, A.M. Zhao, Z.Q. Gong, J.G. He, T.T. Tong, and H.J. Hu: Mater. Sci. Eng. A, 2014, vol. 613, pp. 8-16.

    CAS  Google Scholar 

  48. [48].Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: ISIJ Int., 2002, vol. 42, pp. 1571-77.

    CAS  Google Scholar 

  49. P.J. Jacques, J. Ladrière, and F. Delannay: Metall. Mater. Trans. A, 2011, vol. 32, pp. 2759-68.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from National Key Research and Development Program of China (Grant No. 2016YFB0300105) and Fundamental Research Funds (N180725021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Jiang, Z., Liu, F. et al. Achievement of High Ductility and Ultra-high Strength of V-Nb Microalloyed Spring Steel by Austempered Multiphase Microstructure. Metall Mater Trans A 51, 3565–3575 (2020). https://doi.org/10.1007/s11661-020-05777-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05777-2

Navigation