Skip to main content
Log in

Outstanding Tensile Ductility in High Iron-Containing Al-Si-Cu Alloys

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cast Al(5.5 to 6.3 wt pct)Si-(3.1 to 3.7 wt pct)Cu alloys containing 0.6 and 1.2 wt pct Fe were processed by spray forming, rotary swaging, and homogenization/solution heat treatment, which led to a tensile ductility of 16 pct. Such outstanding ductility is ascribed to the microstructure formed: globular silicon particles, refined iron-rich intermetallics, and a supersaturated solid solution of Cu in the α-Al matrix that promoted dynamic strain aging and homogenization of the deformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. G. Gaustad, E. Olivetti, R. Kirchain, Resour. Conserv. Recycl. 58, 79–87 (2012). https://doi.org/10.1016/j.resconrec.2011.10.010

    Article  Google Scholar 

  2. L. Zhang, J. Gao, L.N.W. Damoah, D.G. Robertson, Min. Proces. Extract. Metall. Rev. 33, 99–157 (2012). https://doi.org/10.1080/08827508.2010.542211

    Article  CAS  Google Scholar 

  3. A.M. Samuel, A. Pennors, C. Villenueve, F.H. Samuel, H.W. Doty, S. Valtierra, Int. J. Cast Met. Res. 13(4), 231–253 (2000). https://doi.org/10.1080/13640461.2000.11819406

    Article  CAS  Google Scholar 

  4. Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, J.F. Witz, D. Balloy, Eng. Fract. Mech. 183, 94–108 (2017). https://doi.org/10.1016/j.engfracmech.2017.05.006

    Article  Google Scholar 

  5. S. Seifeddine, S. Johansson, I.L. Svensson, Mater. Sci. Eng. A 490(1–2), 385–390 (2008). https://doi.org/10.1016/j.msea.2008.01.056

    Article  CAS  Google Scholar 

  6. Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, P. Osmond, D. Balloy, Mater. Sci. Eng. A 689, 286–297 (2017). https://doi.org/10.1016/j.msea.2017.02.041

    Article  CAS  Google Scholar 

  7. S. Menargues, E. Martín, M.T. Baile, J.A. Picas, Mater. Sci. Eng. A 62, 236–242 (2015). https://doi.org/10.1016/j.msea.2014.10.078

    Article  CAS  Google Scholar 

  8. F. Paray, J.E. Gruzleski, Cast Met. 7(1), 29–40 (1994). https://doi.org/10.1080/09534962.1994.11819161

    Article  CAS  Google Scholar 

  9. E. Rincón, H.F. López, M.M. Cisneros, H. Mancha, M.A. Cisneros, Mater. Sci. Eng. A 452–453, 682–687 (2007). https://doi.org/10.1016/j.msea.2006.11.029

    Article  CAS  Google Scholar 

  10. B.J.M. Freitas, L.B. Otani, C.S. Kiminami, W.J.F. Botta, C. Bolfarini, Int. J. Adv. Manuf. Tech. 102(9–12), 3879–3894 (2019). https://doi.org/10.1007/s00170-019-03449-z

    Article  Google Scholar 

  11. L.A. Bereta, C.F. Ferrarini, W.J.F. Botta, C.S. Kiminami, C. Bolfarini, J. Alloys Compd. 434–435, 371–374 (2007). https://doi.org/10.1016/j.jallcom.2006.08.156

    Article  CAS  Google Scholar 

  12. C.F. Ferrarini, C. Bolfarini, C.S. Kiminami, W.J.F. Botta, Mater. Sci. Eng. A 375–377, 577–580 (2004). https://doi.org/10.1016/j.msea.2003.10.062

    Article  CAS  Google Scholar 

  13. E.M. Mazzer, C.R.M. Afonso, C. Bolfarini, C.S. Kiminami, Intermetallics 43, 182–187 (2013). https://doi.org/10.1016/j.intermet.2013.08.004

    Article  CAS  Google Scholar 

  14. H.A. Godinho, A.L.R. Beletati, E.J. Giordano, C. Bolfarini, J. Alloys Compd. 586, 139–142 (2014). https://doi.org/10.1016/j.jallcom.2012.12.122

    Article  CAS  Google Scholar 

  15. L.H. Pereira, G.H. Asato, L.B. Otani, A.M.Jr. Jorge, C.S. Kiminami, C. Bolfarini, W.J. Botta: Mater. Charact., 2018, vol. 145, pp. 507–15. DOI: https://doi.org/10.1016/j.matchar.2018.09.00610.1016/j.matchar.2018.09.006

    Article  CAS  Google Scholar 

  16. P.S. Grant, Prog. Mater. Sci. 39(4–5), 497–545 (1995). https://doi.org/10.1016/0079-6425(95)00004-6

    Article  CAS  Google Scholar 

  17. V.C. Srivastava, R.K. Mandal, S.N. Ojha, Mater. Sci. Eng. A 304–306, 555–558 (2001). https://doi.org/10.1016/s0921-5093(00)01514-8

    Article  Google Scholar 

  18. V.C. Srivastava, R.K. Mandal, S.N. Ojha, K. Venkateswarlu, Mater. Sci. Eng. A 471(1–2), 38–49 (2007). https://doi.org/10.1016/j.msea.2007.04.109

    Article  CAS  Google Scholar 

  19. V. Uhlenwinkel, N. Ellendt, Mater. Sci. Forum 534–536, 429–432 (2007). https://doi.org/10.4028/www.scientific.net/msf.534-536.429

    Article  Google Scholar 

  20. L.B. Otani, M.M. Matsuo, B.J.M. Freitas, G. Zepon, C.S. Kiminami, W.J. Botta, C. Bolfarini, J. Mat. Res. Tech. 8(4), 3539–3549 (2019). https://doi.org/10.1016/j.jmrt.2019.06.030

    Article  CAS  Google Scholar 

  21. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mat. 12(4), 344–350 (2013). https://doi.org/10.1038/NMAT3544

    Article  CAS  Google Scholar 

  22. L. Jiang, J.K. Li, M.P. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, G. Yang, Scient. Rep. 4(1), 1–6 (2014). https://doi.org/10.1038/srep03605

    Article  CAS  Google Scholar 

  23. B. Dang, X. Zhang, Y.Z. Chen, C.X. Chen, H.T. Wang, F. Liu, Scient. Rep. 6(1), 1–10 (2016). https://doi.org/10.1038/srep30874

    Article  CAS  Google Scholar 

  24. C.R. Hutchinson, S.P. Ringer, Metall. Mater. Trans. A 31A, 2721–2733 (2000). https://doi.org/10.1007/bf02830331

    Article  CAS  Google Scholar 

  25. P.S. Grant, Metall. Mater. Trans. A 38(7), 20–1529 (2007). https://doi.org/10.1007/s11661-006-9015-3

    Article  CAS  Google Scholar 

  26. G. Zepon, N. Ellendt, V. Uhlenwinkel, C. Bolfarini, Metall. Mater Trans A 47(2), 842–851 (2016). https://doi.org/10.1007/s11661-015-3253-1

    Article  CAS  Google Scholar 

  27. E. Pink, S. Kumar, B. Tian, Mat. Sci. Eng. A 280, 17–24 (2000). https://doi.org/10.1016/S0921-5093(99)00650-4

    Article  Google Scholar 

  28. J.A. Taylor, Procedia. Mater. Sci. 1, 19–33 (2012). https://doi.org/10.1016/j.mspro.2012.06.004

    Article  CAS  Google Scholar 

Download references

The authors would like to thank the Brazilian institutions: Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP (scholarship n° 19/05885-7 and Thematic Project, Grant No. 2013/05987-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES (Finance code 001), and Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil/CNPq for the financial support. They would also like to thank the Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the general facilities.

Conflict of interest: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudemiro Bolfarini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 9, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins Freitas, B.J., Jorge Junior, A.M., Zepon, G. et al. Outstanding Tensile Ductility in High Iron-Containing Al-Si-Cu Alloys. Metall Mater Trans A 51, 2703–2710 (2020). https://doi.org/10.1007/s11661-020-05744-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05744-x

Navigation