Skip to main content
Log in

Effect of iron on the microstructure and mechanical properties of the spray-formed and rotary-swaged 319 aluminum alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The influence of iron additions (0.8, 1.2, and 1.5 wt.%) on the microstructure and tensile properties of the 319 aluminum alloy processed by spray forming and rotary swaging was investigated. The spray-formed deposits were rotary-swaged at 573 K with an area reduction ratio of 5:1. Room temperature tensile tests showed a substantial increase of elongation at fracture (5.5 to 8%) when compared to the values observed for the iron-containing conventionally cast counterpart (0.6%). The high values of elongation at fracture were obtained due to the significant microstructural refinement and decrease of volumetric phase fraction, especially the iron-rich intermetallics, promoted by the combination of spray forming and rotary swaging. Therefore, this processing route significantly reduces the deleterious effect on the ductility caused by the iron content and the presence of β-AlFeSi intermetallic phase in hypoeutectic Al-Si alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaustad G, Olivetti E, Kirchain R (2012) Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conserv Recycl 58:79–87. https://doi.org/10.1016/j.resconrec.2011.10.010

    Article  Google Scholar 

  2. Zhang L, Gao J, Nana L, Damoah W, Robertson DG (2012) Removal of Iron from aluminum: a review. Miner process extr metal rev 33:99–157. https://doi.org/10.1080/08827508.2010.542211

    Article  Google Scholar 

  3. Samuel AM, Pennors A, Villenueve C, Samuel FH, Doty HW, Valtierra S (2000) Effect of cooling rate and Sr-modification on porosity and Fe-intermetallics formation in Al-6.5% Si-3.5% Cu-Fe alloys. Int J Cast Metal Res 13:231–253. https://doi.org/10.1080/13640461.2000.11819406

    Article  Google Scholar 

  4. Ma Z, Samuel AM, Samuel FH, Doty HW, Valtierra S (2008) A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: effect of -iron intermetallics and porosity. Mater Sci Eng A 490:36–51. https://doi.org/10.1016/j.msea.2008.01.028

    Article  Google Scholar 

  5. Lu L, Dahle AK (2005) Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci 36A:819–835. https://doi.org/10.1007/s11661-005-1012-4

    Google Scholar 

  6. Taylor JA, Schaffer GB, StJohn DH (1999) The role of iron in the formation of porosity in Al-Si-Cu–based casting alloys: part I. Initial experimental observations. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci 30A:1643–1650. https://doi.org/10.1007/s11661-999-0101-1

    Article  Google Scholar 

  7. Moustafa MA (2009) Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys. J Mater Process Technol 209:605–610. https://doi.org/10.1016/j.jmatprotec.2008.02.073

    Article  Google Scholar 

  8. Seifeddine S, Johansson S, Svensson IL (2008) The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si-based alloys. Mater Sci Eng A 490:385–390. https://doi.org/10.1016/j.msea.2008.01.056

    Article  Google Scholar 

  9. Dinnis CM, Taylor JA, Dahle AK (2005) As-cast morphology of iron-intermetallics in Al–Si foundry alloys. Scr Mater 53:955–958. https://doi.org/10.1016/j.scriptamat.2005.06.028

    Article  Google Scholar 

  10. Hwang JY, Doty HW, Kaufman MJ (2008) The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Mater Sci Eng A 488:496–504. https://doi.org/10.1016/j.msea.2007.12.026

    Article  Google Scholar 

  11. Rincón E, López HF, Cisneros MM, Mancha H, Cisneros MA (2007) Effect of temperature on the tensile properties of an as-cast aluminum alloy A319. Mater Sci Eng A 452–453:682–687. https://doi.org/10.1016/j.msea.2006.11.029

    Article  Google Scholar 

  12. Li Z, Limodin N, Tandjaoui A, Quaegebeur P, Osmond P, Balloy D (2017) Influence of Sr, Fe and Mn content and casting process on the microstructures and mechanical properties of AlSi7Cu3 alloy. Mater Sci Eng A 689:286–297. https://doi.org/10.1016/j.msea.2017.02.041

    Article  Google Scholar 

  13. Godinho HA, Beletati ALR, Giordano EJ, Bolfarini C (2014) Microstructure and mechanical properties of a spray formed and extruded AA7050 recycled alloy. J Alloys Compd 586:139–142. https://doi.org/10.1016/j.jallcom.2012.12.122

    Article  Google Scholar 

  14. Mazzer EM, Afonso CRM, Bolfarini C, Kiminami CS (2013) Microstructure study of Al 7050 alloy reprocessed by spray forming and hot-extrusion and aged at 121 °C. Intermetallics 43:182–187. https://doi.org/10.1016/j.intermet.2013.08.004

    Article  Google Scholar 

  15. Bereta LA, Ferrarini CF, Botta WJF, Kiminami CS, Bolfarini C (2007) Microstructure and mechanical properties of spray co-deposited Al–8.9 wt.% Si–3.2 wt.% Cu–0.9 wt.% Fe + (Al–3 wt.% Mn–4 wt.% Si)p composite. J Alloys Compd 434–435:371–374. https://doi.org/10.1016/j.jallcom.2006.08.156

    Article  Google Scholar 

  16. Ferrarini CF, Bolfarini C, Kiminami CS, Botta WJ (2004) Microstructure and mechanical properties of spray deposited hypoeutectic Al–Si alloy. Mater Sci Eng A 375–377:577–580. https://doi.org/10.1016/j.msea.2003.10.062

    Article  Google Scholar 

  17. Srivastava VC, Mandal RK, Ojha SN (2001) Microstructure and mechanical properties of Al–Si alloys produced by spray forming process. Mater Sci Eng A 304-306:555–558. https://doi.org/10.1016/s0921-5093(00)01514-8

    Article  Google Scholar 

  18. Srivastava VC, Mandal RK, Ojha SN, Venkateswarlu K (2007) Microstructural modifications induced during spray deposition of Al–Si–Fe alloys and their mechanical properties. Mater Sci Eng A 471:38–49. https://doi.org/10.1016/j.msea.2007.04.109

    Article  Google Scholar 

  19. Grant PS (2007) Solidification in spray forming. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci 38A:1520–1529. https://doi.org/10.1007/s11661-006-9015-3

    Article  Google Scholar 

  20. Zepon G, Ellendt N, Uhlenwinkel V, Bolfarini C (2016) Solidification sequence of spray-formed steels. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci 47A:842–851. https://doi.org/10.1007/s11661-015-3253-1

    Article  Google Scholar 

  21. Uhlenwinkel V, Ellendt N (2007) Porosity in spray-formed materials. Mater Sci Forum 534-536:429–432. https://doi.org/10.4028/www.scientific.net/msf.534-536.429

    Article  Google Scholar 

  22. Grant PS (1995) Spray forming. Prog Mater Sci 39:497–545. https://doi.org/10.1016/0079-6425(95)00004-6

    Article  Google Scholar 

  23. Abu-Dheir N, Khraisheh M, Saito K, Male A (2005) Silicon morphology modification in the eutectic Al–Si alloy using mechanical mold vibration. Mater Sci Eng A 393:109–117. https://doi.org/10.1016/j.msea.2004.09.038

    Article  Google Scholar 

  24. Ma ZY, Sharma SR, Mishra RS (2006) Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci 37A:3323–3336. https://doi.org/10.1007/bf02586167

    Article  Google Scholar 

  25. Shabestari SG, Parshizfard E (2011) Effect of semi-solid forming on the microstructure and mechanical properties of the iron containing Al–Si alloys. J Alloys Compd 509:7973–7978. https://doi.org/10.1016/j.jallcom.2011.05.052

    Article  Google Scholar 

  26. ASTM E562: ASTM International (2011) West Conshohocken, PA. https://doi.org/10.1520/E0562-11

  27. ASTM E8/E8M-16a: ASTM International (2016) West Conshohocken, PA. https://doi.org/10.1520/E0008_E0008M-16A

  28. Ji S, Yang W, Gao F, Watson D, Fan Z (2013) Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Mater Sci Eng A 564:130–139. https://doi.org/10.1016/j.msea.2012.11.095

    Article  Google Scholar 

  29. Li Z, Limodin N, Tandjaoui A, Quaegebeur P, Witz JF, Balloy D (2017) Influence of Fe content on the damage mechanism in A319 aluminum alloy: tensile tests and digital image correlation. Eng Fract Mech 183:94–108. https://doi.org/10.1016/j.engfracmech.2017.05.006

    Article  Google Scholar 

  30. Taylor JA (2012) Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Mater Sci 1:19–33. https://doi.org/10.1016/j.mspro.2012.06.004

    Article  Google Scholar 

  31. Wnming J, Chen X, Wang B, Zitian F, Hebao H (2015) Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting. Int J Adv Manuf Technol 83:167–175. https://doi.org/10.1007/s00170-015-7586-0

    Google Scholar 

  32. Kund NK (2018) Effect of tilted plate vibration on solidification and microstructural and mechanical properties of semisolid cast and heat-treated A356 Al alloy. Int J Adv Manuf Technol 97:1617–1626. https://doi.org/10.1007/s00170-018-2063-1

    Article  Google Scholar 

  33. Richmire S, Haghshenas M (2018) Friction stir welding of a hypoeutectic Al–Si alloy: microstructural, mechanical, and cyclic response. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-3146-8

  34. Pereira LH, Asato GH, Otani LB, Jorge AM Jr, Kiminami CS, Bolfarini C, Botta WJ (2018) Changing the solidification sequence and the morphology of iron-containing intermetallic phases in AA6061 aluminum alloy processed by spray forming. Mater Charact 145:507–515. https://doi.org/10.1016/j.matchar.2018.09.006

    Article  Google Scholar 

  35. Lee SH, Saito Y, Sakai T, Utsunomiya H (2002) Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng A 325:228–235. https://doi.org/10.1016/S0921-5093(01)01416-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the general facilities.

Funding

This work was financially supported by the Brazilian institutions: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES (Finance code 001), Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP (Thematic Project, Grant No. 2013/05987-8), and Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil/CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Juliet Martins Freitas.

Ethics declarations

Declarations of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, B.J.M., Otani, L.B., Kiminami, C.S. et al. Effect of iron on the microstructure and mechanical properties of the spray-formed and rotary-swaged 319 aluminum alloy. Int J Adv Manuf Technol 102, 3879–3894 (2019). https://doi.org/10.1007/s00170-019-03449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03449-z

Keywords

Navigation