Skip to main content
Log in

Mechanical Performance Improvement by Nitrogen Addition in N-CoCrNi Compositionally Complex Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the effects of nitrogen addition on the phase formation and mechanical properties in compositionally complex alloy (CCA) of N-CoCrNi are investigated. Recrystallized N-CoCrNi exhibits Cr2N precipitate formation on the microstructure. The Cr2N formation is found to inhibit grain growth during recrystallization, causing fine grain sizes in N-CoCrNi. The microhardness and yield strength are also significantly improved in N-CoCrNi compared to CoCrNi. This occurs owing to several strengthening mechanisms by nitrogen addition to N-CoCrNi via solid-solution, grain boundary, and Cr2N precipitation hardening. It is observed that nitrogen addition is a cost-effective method to provide a potential strengthening element in CCAs, particularly in a CoCrNi matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. 1 J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.Y. Gan, T.S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Advanced Engineering Materials, 2004, vol. 6, pp. 299–303.

    CAS  Google Scholar 

  2. 2 M. Kang, J.W. Won, K.R. Lim, S.H. Park, S.M. Seo, and Y.S. Na: Korean Journal of Metals and Materials, 2017, vol. 55, pp. 732–8.

    CAS  Google Scholar 

  3. 3 B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Materials Science and Engineering: A, 2004, vol. 375–377, pp. 213–8.

    Google Scholar 

  4. 4 J.-W. Yeh: European Journal of Control, 2006, vol. 31, pp. 633–48.

    CAS  Google Scholar 

  5. 5 D.B. Miracle and O.N. Senkov: Acta Materialia, 2017, vol. 122, pp. 448–511.

    CAS  Google Scholar 

  6. 6 J. Moon, S.I. Hong, J.W. Bae, M.J. Jang, D. Yim, and H.S. Kim: Materials Research Letters, 2017, vol. 5, pp. 472–7.

    CAS  Google Scholar 

  7. 7 J.H. Kim and Y.S. Na: Metals and Materials International, 2019, vol. 25, pp. 296–303.

    CAS  Google Scholar 

  8. 8 Y. Qiu, M.A. Gibson, H.L. Fraser, and N. Birbilis: Materials Science and Technology, 2015, vol. 31, pp. 1235–43.

    CAS  Google Scholar 

  9. 9 R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, and H.S. Grewal: Ultrasonics Sonochemistry, 2018, vol. 41, pp. 252–60.

    CAS  Google Scholar 

  10. 10 R. Kulkarni, B.S. Murty, and V. Srinivas: Journal of Alloys and Compounds, 2018, vol. 746, pp. 194–9.

    CAS  Google Scholar 

  11. 11 H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, and T. Li: Journal of Materials Science and Technology, 2017, vol. 33, pp. 712–7.

    Google Scholar 

  12. 12 A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar: Journal of Alloys and Compounds, 2018, vol. 748, pp. 889–97.

    CAS  Google Scholar 

  13. 13 P.-K. Huang, J.-W. Yeh, T.-T. Shun, and S.-K. Chen: Advanced Engineering Materials, 2004, vol. 6, pp. 74–8.

    CAS  Google Scholar 

  14. 14 S. Nam, C. Kim, and Y. Kim: Journal of Welding and Joining, 2017, vol. 35, pp. 58–66.

    Google Scholar 

  15. 15 Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Acta Materialia, 2014, vol. 81, pp. 428–41.

    CAS  Google Scholar 

  16. 16 Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George: Intermetallics, 2014, vol. 46, pp. 131–40.

    CAS  Google Scholar 

  17. 17 B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Nature Communications, 2016, vol. 7, pp. 1–8.

    Google Scholar 

  18. 18 G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George: Acta Materialia, 2017, vol. 128, pp. 292–303.

    CAS  Google Scholar 

  19. 19 J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, and Z.P. Lu: Intermetallics, 2016, vol. 79, pp. 41–52.

    CAS  Google Scholar 

  20. 20 J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu: Acta Materialia, 2016, vol. 102, pp. 187–96.

    CAS  Google Scholar 

  21. 21 Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai: Acta Materialia, 2017, vol. 138, pp. 72–82.

    CAS  Google Scholar 

  22. R.E. Smallman and A.H.W. Ngan: Modern Physical Metallurgy. Elsevier, 2014, pp. 499–527.

  23. 23 Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, and Z. Lu: Nature, 2018, vol. 563, pp. 546–50.

    CAS  Google Scholar 

  24. 24 Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, and Z.P. Lu: Intermetallics, 2019, vol. 106, pp. 77–87.

    CAS  Google Scholar 

  25. 25 A.S. Domareva, A.A. Dobrikov, B.M. Efros, Y.E. Beigelzimer, and V.N. Varyukhin: High Pressure Research, 1997, vol. 15, pp. 221–32.

    Google Scholar 

  26. 26 Y. Katada, M. Sagara, Y. Kobayashi, and T. Kodama: Materials and Manufacturing Processes, 2004, vol. 19, pp. 19–30.

    CAS  Google Scholar 

  27. 27 V.. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, and Y.N. Petrov: Materials Science and Engineering: A, 1999, vol. 271, pp. 14–21.

    Google Scholar 

  28. 28 J. Jung: Journal of Welding and Joining, 2017, vol. 35, pp. 42–50.

    Google Scholar 

  29. 29 N. Choi, K.R. Lim, Y.S. Na, U. Glatzel, and J.H. Park: Journal of Alloys and Compounds, 2018, vol. 763, pp. 546–57.

    CAS  Google Scholar 

  30. 30 D. Guan, W.M. Rainforth, J. Gao, L. Ma, and B. Wynne: Acta Materialia, 2018, vol. 145, pp. 399–412.

    CAS  Google Scholar 

  31. 31 P.A. Carvalho, I.F. Machado, G. Solorzano, and A.F. Padilha: Philosophical Magazine, 2008, vol. 88, pp. 229–42.

    CAS  Google Scholar 

  32. 32 J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber: Micron, 2016, vol. 84, pp. 43–53.

    CAS  Google Scholar 

  33. 33 D.E. Jodi, J. Park, and N. Park: Materials Characterization, 2019, vol. 157, p. 109888.

    CAS  Google Scholar 

  34. 34 G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, and E.P. George: Acta Materialia, 2018, vol. 161, pp. 338–51.

    CAS  Google Scholar 

  35. 35 D.E. Jodi and N. Park: Materials Letters, 2019, vol. 256, p. 126654.

    CAS  Google Scholar 

  36. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena: 2nd Edition, Pergamon Press, Oxford, UK, 2004.

    Google Scholar 

  37. 37 F.J. Humphreys and M.G. Ardakani: Acta Materialia, 1996, vol. 44, pp. 2717–27.

    CAS  Google Scholar 

  38. 38 D. Lee, M.P. Agustianingrum, N. Park, and N. Tsuji: Journal of Alloys and Compounds, 2019, vol. 800, pp. 372–8.

    CAS  Google Scholar 

  39. 39 A.J. Ardell: Metallurgical Transactions A, 1985, vol. 16, pp. 2131–65.

    Google Scholar 

  40. A.P. Mouritz: Introduction to Aerospace Materials, Elsevier, 2012, pp. 57–90.

  41. 41 M.F. Ashby: Oxide Dispersion Strengthening, Gordon and Breach, New York, 1958.

    Google Scholar 

  42. 42 E.O. Hall: Proceedings of the Physical Society of London Section B, 1951, vol. 64, pp. 747–53.

    Google Scholar 

  43. 43 N.J. Petch: Journal of the Iron and Steel Institute, 1953, vol. 174, pp. 25–8.

    CAS  Google Scholar 

  44. 44 S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji: Scripta Materialia, 2017, vol. 134, pp. 33–6.

    CAS  Google Scholar 

  45. 45 R.L. Fleischer: Acta Metallurgica, 1963, vol. 11, pp. 203–9.

    CAS  Google Scholar 

  46. 46 J.W. Simmons: Materials Science and Engineering A, 1996, vol. 207, pp. 159–69.

    Google Scholar 

  47. 47 Z. Li: Acta Materialia, 2019, vol. 164, pp. 400–12.

    CAS  Google Scholar 

  48. 48 Z. Wu, C.M. Parish, and H. Bei: Journal of Alloys and Compounds, 2015, vol. 647, pp. 815–22.

    CAS  Google Scholar 

  49. 49 J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.J. Lee, and H.S. Kim: Acta Materialia, 2018, vol. 161, pp. 388–99.

    CAS  Google Scholar 

  50. 50 Q. Wang, Y. Lu, Q. Yu, and Z. Zhang: Scientific Reports, 2018, vol. 8, p. 14910.

    Google Scholar 

  51. 51 Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, and T.G. Nieh: Acta Materialia, 2018, vol. 147, pp. 213–25.

    CAS  Google Scholar 

  52. 52 J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.T.M. De Hosson: Acta Materialia, 2017, vol. 131, pp. 206–20.

    CAS  Google Scholar 

  53. 53 X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, and Y. Wu: Materials Science and Engineering A, 2018, vol. 713, pp. 134–40.

    CAS  Google Scholar 

  54. 54 F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: Acta Materialia, 2013, vol. 61, pp. 5743–55.

    CAS  Google Scholar 

  55. 55 J.Y. Ko, J.S. Song, and S.I. Hong: Korean Journal of Metals and Materials, 2018, vol. 56, pp. 26–33.

    CAS  Google Scholar 

  56. H. Yang, J. Li, T. Guo, W.Y. Wang, H. Kou, and J. Wang: Met. Mater. Int., 2019, pp. 1–6.

  57. 57 H. Luo, Z. Li, and D. Raabe: Scientific Reports, 2017, vol. 7, pp. 1–7.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number NRF-2018R1A2B6005809). It also greatly benefited from many fruitful discussions with Dr. Isaac Toda-Caraballo.

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joohyun Park or Nokeun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 12, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodi, D.E., Choi, N., Park, J. et al. Mechanical Performance Improvement by Nitrogen Addition in N-CoCrNi Compositionally Complex Alloys. Metall Mater Trans A 51, 3228–3237 (2020). https://doi.org/10.1007/s11661-020-05738-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05738-9

Navigation