Skip to main content
Log in

Effects of trace secondary elements on microstructure and properties in CoCrMnFeNiX0.1 alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study synthesized four kinds of CoCrMnFeNiX0.1 (X = Al, Cu, Mo, Ti) high-entropy alloys to investigate the alloying effect. We found the strengthening effect after aging thermal treatment can be sequenced as Ti > Mo > Cu > Al, of which the tensile strength was improved by 20 ~ 40% and the elongation to failure preserved (~ 50%) compared with the corresponding casting materials. Specifically, the CoCrMnFeNiTi0.1 alloy offered a yield strength of 435 MPa, an ultimate tensile strength of 900 MPa, and a fracture elongation of 40% is significantly higher than those of their conventional counterparts. Furthermore, the anti-corrosion ability of added secondary elements is in the following order: Ti > Mo > Al > Cu. Through microstructure observations, we discussed and analyzed the formation and evolution of second-phase particles, which play an important role due to the strong interactive effect among different elements. In general, adding a secondary trace Ti or Mo element improves strength and anti-corrosion properties.

Graphical abstract

Enhanced tensile properties are shown in true stress–strain curves of the as-cast and as-aged CoCrMnFeNiX0.1 alloy; post-tensile fracture morphology and corrosion morphology of the as-aged CoCrMnFeNiTi0.1 alloy compare with the as-cast CoCrMnFeNi alloy, indicating that adding trace secondary Ti element benefits the outstanding improvement of strength and anti-corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Some data that could not be presented in this article is available as supplementary data (mentioned as online resource). Other data generated during this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  2. S.A. Firstov, V.F. Gorban’, N.A. Krapivka, M.V. Karpets, A.D. Kostenko, Wear resistance of high-entropy alloys. Powder Metall. Met. Ceram. 56(3–4), 158–164 (2017)

    Article  CAS  Google Scholar 

  3. H.Z. Zhang, C.H. Li, Z.B. Zhu, H.F. Huang, Y.P. Lu, T.M. Wang, T.J. Li, Effects of He-ion irradiation on the microstructures and mechanical properties of the novel Co-free VxCrFeMnNiy high-entropy alloys. J. Nucl. Mater. 572, 154074 (2022)

    Article  CAS  Google Scholar 

  4. J.C. Duan, M.L. Wang, R. Huang, J.W. Miao, Y.P. Lu, T.M. Wang, T.J. Li, A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance. Sci. China Mater. 66(2), 772–779 (2022)

    Article  Google Scholar 

  5. M.D. Zhang, L.J. Zhang, P.K. Liaw, G. Li, R.P. Liu, Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbx high-entropy alloys. J. Mater. Res. 33(19), 1–11 (2018)

    Article  CAS  Google Scholar 

  6. M.L. Wang, Y.P. Lu, J.G. Lan, T.M. Wang, C. Zhang, Z.Q. Cao, T.J. Li, P.K. Liaw, Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications [J]. Acta Mater. 248, 118806 (2023)

    Article  CAS  Google Scholar 

  7. M.L. Wang, Y.P. Lu, T.M. Wang, C. Zhang, Z.Q. Cao, T.J. Li, P.K. Liaw, A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scr. Mater. 204, 114132 (2021)

    Article  CAS  Google Scholar 

  8. Z.Y. Lyu, X.S. Fan, C.H. Lee, S.Y. Wang, R. Feng, P.K. Liaw, Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: a review. J. Mater. Res. 33(19), 1–13 (2018)

    Article  Google Scholar 

  9. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105–113 (2014)

    Article  CAS  Google Scholar 

  10. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743–5755 (2013)

    Article  CAS  Google Scholar 

  11. Z. Wu, C.M. Parish, H. Bei, Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J. Alloys Compd. 647, 815–822 (2015)

    Article  CAS  Google Scholar 

  12. A.J. Zaddach, R.O. Scattergood, C.C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys. Mater. Sci. Eng. A 636, 373–378 (2015)

    Article  CAS  Google Scholar 

  13. X.Z. Gao, W. Jiang, Y.P. Lu, Z.G. Ding, J.Z. Liu, W. Liu, G. Sha, T.M. Wang, T.J. Li, I.T.H. Chang, Y.H. Zhao, Excellent strength-ductility combination of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at cryogenic temperatures. J. Mater. Sci. Technol. 154, 166–177 (2023)

    Article  Google Scholar 

  14. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Sci. 345(6201), 1153–1158 (2014)

    Article  CAS  Google Scholar 

  15. S. Hu, T. Fu, Q.H. Liang, S.Y. Weng, X. Chen, Y.B. Zhao, X.H. Peng, Formation and anisotropic mechanical behavior of stacking fault tetrahedron in Ni and CoCrFeNiMn high-entropy alloy. Front. Mater. 8, 608 (2022)

    Article  Google Scholar 

  16. M.S. Mehranpour, H. Shahmir, M. Nili-Ahmadabadi, CoCrFeNiMn high entropy alloy microstructure and mechanical properties after severe cold shape rolling and annealing. Mater. Sci. Eng. A 793, 139884 (2020)

    Article  CAS  Google Scholar 

  17. S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 44–47 (2015)

    Article  CAS  Google Scholar 

  18. S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 689, 122–133 (2017)

    Article  CAS  Google Scholar 

  19. J.W. Yeh, S.K. Chen, J.Y. Gan, Communication: formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533–2536 (2004)

    Article  Google Scholar 

  20. D. Kong, J. Guo, R.W. Liu, X.H. Zhang, Y.P. Song, Z.X. Li, F.J. Guo, X.F. Xing, Y. Xu, W. Wang, Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0.5 high entropy alloys. Intermetallics 114, 106560 (2019)

    Article  CAS  Google Scholar 

  21. T.T. Shun, L.Y. Chang, M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater. Charact. 70, 63–67 (2012)

    Article  CAS  Google Scholar 

  22. ASTM, Standard Practice for Laborator Immersion Corrosion Testing of Metals (Academia, 2004)

    Google Scholar 

  23. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015)

    Article  CAS  Google Scholar 

  24. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016)

    Article  CAS  Google Scholar 

  25. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122–127 (2017)

    Article  CAS  Google Scholar 

  26. M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72, 5–8 (2014)

    Article  Google Scholar 

  27. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152–163 (2016)

    Article  CAS  Google Scholar 

  28. A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013)

    Article  CAS  Google Scholar 

  29. H. Shahmir, A. Derakhshandeh, B. Hallstedt, M. Nili-Ahmadabadi, Microstructural evolution and mechanical properties of CoCrFeNiMnTix high-entropy alloys. Materialwiss. Werkstofftech. 52(4), 441–451 (2021)

    Article  CAS  Google Scholar 

  30. J. Moon, O. Bouaziz, H.S. Kim, Y. Estrin, Twinning engineering of a CoCrFeMnNi high-entropy alloy. Scr. Mater. 197, 113808 (2021)

    Article  CAS  Google Scholar 

  31. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332–342 (2016)

    Article  CAS  Google Scholar 

  32. C.D. Dai, Y. Fu, Y. Pan, Y.P. Yin, C.W. Du, Z.Y. Liu, Microstructure and mechanical properties of FeCoCrNiMo0.1 high-entropy alloy with various annealing treatments. Mater. Charact. 179, 111313 (2021)

    Article  CAS  Google Scholar 

  33. W.Q. Wu, L. Guo, B. Liu, S. Ni, Y. Liu, M. Song, Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy. Philos. Mag. 97(34), 3229–3245 (2017)

    Article  CAS  Google Scholar 

  34. J.L. Yuan, Y.C. Wu, P.K. Liaw, J.H. Luan, Z.B. Jiao, J. Li, P.D. Han, J.W. Qiao, Remarkable cryogenic strengthening and toughening in nano-coherent CoCrFeNiTi0.2 high-entropy alloys via energetically-tuning polymorphous precipitates. Mater. Sci. Eng. A 842, 143111 (2022)

    Article  CAS  Google Scholar 

  35. J.X. Hou, J.W. Qiao, J.H. Lian, P.K. Liaw, Revealing the relationship between microstructures, textures, and mechanical behaviors of cold-rolled Al0.1CoCrFeNi high-entropy alloys. Mater. Sci. Eng. A 804, 140752 (2021)

    Article  CAS  Google Scholar 

  36. G. Ma, Y. Zhao, H. Cui, X. Song, M. Wang, K. Lee, X. Gao, Q. Song, C. Wang, Addition Al and/or Ti induced modifications of microstructures, mechanical properties, and corrosion properties in CoCrFeNi high-entropy alloy coatings. Acta Metall. Sin. (Engl. Lett.) 34(8), 1087–1102 (2021)

    Article  CAS  Google Scholar 

  37. Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corrosion of AlCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33–45 (2017)

    Article  CAS  Google Scholar 

  38. Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 92(1), 112–117 (2005)

    Article  CAS  Google Scholar 

  39. W. Wang, J. Wang, H. Yi, W. Qi, Q. Peng, Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)(100–x)Mo(x) high-entropy alloys. Entropy 20(12), 908 (2018)

    Article  CAS  Google Scholar 

  40. W.H. Guo, J.Y. Li, M.F. Qi, Y.Z. Xu, H.R. Ezatpour, Effects of heat treatment on the microstructure, mechanical properties and corrosion resistance of AlCoCrFeNiTi0.5 high-entropy alloy. J. Alloys Compd. 884, 161026 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (NO. 51801072, NO. 51805219), and China Postdoctoral Science Foundation (2019TQ0126).

Funding

The financial support was provided by the National Natural Science Foundation of China (NO. 51801072, NO. 51805219), and China Postdoctoral Science Foundation (2019TQ0126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Tang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2662 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Guo, M., Zhou, Y. et al. Effects of trace secondary elements on microstructure and properties in CoCrMnFeNiX0.1 alloys. Journal of Materials Research 38, 3110–3123 (2023). https://doi.org/10.1557/s43578-023-01031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01031-8

Keywords

Navigation