Skip to main content
Log in

The Role of Internal Oxides on the Liquid Metal Embrittlement Cracking During Resistance Spot Welding of the Dual Phase Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

One of the most effective ways to improve reactive wetting of dual phase (DP) steels during galvanizing process is annealing under relatively high oxygen partial pressure. This annealing process can lead to internal oxide formation rather than external ones. Since these oxides are mostly observed in grain boundaries (GBs), their presence could influence GB-related phenomena such as liquid metal embrittlement (LME) cracking during further manufacturing processes such as resistance spot welding (RSW). The present work has shown that internal oxides located at GBs assisted LME crack formation during RSW of DP steel. Two types of LME cracks were observed in the shoulder and center of the weld. It has been shown that at the initial stages of welding time, LME cracks initiate in the shoulder of the nugget by the Zn diffusion into oxide-bearing GBs. As welding time continues, higher temperatures and tensile stresses are applied to the steel sheets which allow center cracks to be formed more easily due to the presence of oxides which degrade the GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.F. Chen, I. Aslam, B. Li, R.L. Martens, J.R. Goodwin, F.E. Goodwin, and M.F. Horstemeyer: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3748–57.

    Article  Google Scholar 

  2. F. Farias, M. Balbi, M.N. Batista, and I. Alvarez-Armas: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6010–21.

    Article  Google Scholar 

  3. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.

    Article  CAS  Google Scholar 

  4. J. Zhao and Z. Jiang: Prog. Mater. Sci., 2018, vol. 94, pp. 174–242.

    Article  CAS  Google Scholar 

  5. G. Rosenberg, I. Sinaiová, and Ľ. Juhar: Mater. Sci. Eng. A, 2013, vol. 582, pp. 347–58.

    Article  CAS  Google Scholar 

  6. S.M.A. Shibli, B.N. Meena, and R. Remya: Surf. Coatings Technol., 2015, vol. 262, pp. 210–5.

    Article  CAS  Google Scholar 

  7. M. Pourmajidian and J.R. McDermid: Surf. Coatings Technol., 2019, vol. 357, pp. 418–26.

    Article  CAS  Google Scholar 

  8. G. SeyedMousavi and J.R. McDermid: Surf. Coat. Technol., 2018, vol. 351, pp. 11–20.

    Article  CAS  Google Scholar 

  9. Y.F. Gong, K.I.M. HanSoo, and B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.

    Article  CAS  Google Scholar 

  10. R. Khondker, A. Mertens, and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157–65.

    Article  Google Scholar 

  11. M. Pourmajidian and J.R. Mcdermid: ISIJ Int., 2018, vol. 58, pp. 1635–43.

    Article  CAS  Google Scholar 

  12. H.S. Nam and D.J. Srolovitz: Acta Mater., 2009, vol. 57, pp. 1546–53.

    Article  CAS  Google Scholar 

  13. C.W. Lee, D.W. Fan, I.R. Sohn, S.J. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43, pp. 5122–7.

    Article  CAS  Google Scholar 

  14. L. Cho, H. Kang, C. Lee, and B.C. De Cooman: Scr. Mater., 2014, vol. 90, pp. 25–8.

    Article  Google Scholar 

  15. M.H. Razmpoosh, A. Macwan, E. Biro, D.L. Chen, Y. Peng, F. Goodwin, and Y. Zhou: Mater. Des., 2018, vol. 155, pp. 375–83.

    Article  CAS  Google Scholar 

  16. M.H. Razmpoosh, E. Biro, D.L. Chen, F. Goodwin, and Y. Zhou: Mater. Charact., 2018, vol. 145, pp. 627–33.

    Article  CAS  Google Scholar 

  17. D.C. Saha, I. Chang, and Y. DoPark: Mater. Charact., 2014, vol. 93, pp. 40–51

    Article  CAS  Google Scholar 

  18. R. Ashiri, M.A. Haque, C.W. Ji, M. Shamanian, H.R. Salimijazi, and Y. DoPark: Scr. Mater., 2015, vol. 109, pp. 6–10.

    Article  CAS  Google Scholar 

  19. R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.H. Bae, C.W. Ji, K.G. Chin, and Y. DoPark: Scr. Mater., 2016, vol. 114, pp. 41–7

    Article  CAS  Google Scholar 

  20. J. Barthelmie, A. Schram, and V. Wesling: Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-Refined TWIP Steels, IOP Publishing, Bristol, 2016.

    Book  Google Scholar 

  21. H. Lee, M.C. Jo, S.S. Sohn, S.H. Kim, T. Song, S.K. Kim, H.S. Kim, N.J. Kim, and S. Lee: Mater. Charact., 2019, vol. 147, pp. 233–41.

    Article  CAS  Google Scholar 

  22. Y.G. Kim, I.J. Kim, J.S. Kim, Y. IlChung, and D.Y. Choi: Mater. Trans., 2014, vol. 55, pp. 171–5.

    Article  CAS  Google Scholar 

  23. D.Y. Choi, S.H. Uhm, C.M. Enloe, H. Lee, G. Kim, and C. Horvath: Mater. Sci. Technol., 2017, https://doi.org/10.7449/2017mst/2017/mst_2017_454_462

    Article  Google Scholar 

  24. D.Y. Choi, A. Sharma, S.H. Uhm, and J.P. Jung: Met. Mater. Int., 2018, vol. 25, pp. 219–28

    Article  Google Scholar 

  25. R. Ashiri, H. Mostaan, and Y. DoPark: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6161–72.

    Article  Google Scholar 

  26. C. DiGiovanni, E. Biro, and N.Y. Zhou: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 218–24.

    Article  CAS  Google Scholar 

  27. Z. Ling, T. Chen, L. Kong, M. Wang, H. Pan, and M. Lei: Metall. Mater. Trans. A, 2019, vol. 50, pp. 5128–42.

    Article  Google Scholar 

  28. E. Tolf, J. Hedegård, and A. Melander: Sci. Technol. Weld. Join., 2012, vol. 18, pp. 25–31.

    Article  Google Scholar 

  29. J. Frei and M. Rethmeier: Weld. World, 2018, vol. 62, pp. 1031–7.

    Article  CAS  Google Scholar 

  30. American welding society: test method for evaluating the resistance spot welding behavior of automotive sheet steel materials (AWS D8.9M), 2012, pp. 1–107.

  31. Group ESI, SYSWORLD 2010. Technical description of capabilities, 2010.

  32. M. Pourmajidian and J.R. McDermid: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1795–808.

    Article  Google Scholar 

  33. J.M. Mataigne, M. Lamberigts, and V. Leroy: Minerals, Metals & Materials Society, Warrendale, PA, 1992, pp. 512–28.

    Google Scholar 

  34. A. GhateiKalashami, X. Han, F. Goodwin and N.Y. Zhou: Surf. Coat. Technol., 2019, vol. 381, 125181.

    Article  Google Scholar 

  35. H. Kang, L. Cho, C. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2885–905.

    Article  Google Scholar 

  36. C. Digiovanni, L. He, U. Pistek, F. Goodwin, E. Biro, and N.Y. Zhou: J. Manuf. Process., 2020, vol. 49, pp. 1–9.

    Article  Google Scholar 

  37. D. Bhattacharya: Mater. Sci. Technol. (United Kingdom), 2018, vol. 34, pp. 1809–29.

    Article  CAS  Google Scholar 

  38. E. Wachowicz and A. Kiejna: Comput. Mater. Sci., 2008, vol. 43, pp. 736–43.

    Article  CAS  Google Scholar 

  39. C. Chen, S. Lv, Z. Wang, M. Saito, N. Shibata, T. Taniguchi, and Y. Ikuhara: Appl. Phys. Lett., 2013, vol. 102, pp. 1–6.

    Google Scholar 

  40. A. De VasconcelosVarela, H.D. De Deus, M.C. De Siqueira, M.C. Rezende, and L.H. De Almeida: J. Mater. Res. Technol., 2018, vol. 7, pp. 319–25.

    Article  Google Scholar 

  41. U. Krupp, K. Wackermann, H.J. Christ, M.H. Colliander, and K. Stiller: Oxid. Met., 2017, vol. 88, pp. 3–14.

    Article  CAS  Google Scholar 

  42. K. Fujii, T. Miura, H. Nishioka, and K. Fukuya: In: J.T. Busby, G. Ilevbare, and P.L. Andresen, eds., Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Springer, Cham.

  43. M. Tumuluru: Weld. J., 2019, vol. 98, pp. 351S-64S.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs (CRC) program, and the International Zinc Association (Durham, NC) for their financial support and providing material to carry out this work. The authors also would like to acknowledge the support from Prof. McDermid at McMaster University, Hamilton, Canada for providing the galvanizing process simulator and material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghatei Kalashami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashami, A.G., DiGiovanni, C., Razmpoosh, M.H. et al. The Role of Internal Oxides on the Liquid Metal Embrittlement Cracking During Resistance Spot Welding of the Dual Phase Steel. Metall Mater Trans A 51, 2180–2191 (2020). https://doi.org/10.1007/s11661-020-05702-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05702-7

Navigation