Skip to main content
Log in

Orientation Dependence of Deformation-Induced Martensite Transformation During Uniaxial Tensile Deformation of Carbide-Free Bainitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study investigates the orientation dependence of deformation-induced martensite (DIM) transformation in carbide-free bainitic steel using experimental macrotexture analysis and crystal plasticity-based modelling. The results indicate that the P {110}〈122〉 component of retained austenite preferentially undergoes DIM transformation during uniaxial tensile deformation at room temperature. It is also found that the P component of retained austenite possesses the lowest Schmid factor value compared with other possible texture components. The lowest Schmid factor value of the P component results in the highest resolved shear stress value for its slipping. As a result, during plastic deformation when most of the initial components of the retained austenite reorient themselves to other relatively stable orientations, the P component remains almost unaffected. Accumulation of stress concentration thus increases along this component, which eventually leads to its deformation-induced transformation to martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251–7.

    CAS  Google Scholar 

  2. J. Pacyna, P. Bala, S. Dobosz, A. Kokosza, and S. Kac: J. Achiev. Mater. Manuf. Eng., 2010, vol. 39, pp. 19–26.

    Google Scholar 

  3. F.G. Caballero, S. Allain, J. Cornide, J.D. PuertaVelásquez, C. Garcia-Mateo, and M.K. Miller: Mater. Des., 2013, vol. 49, pp. 667–80.

    CAS  Google Scholar 

  4. S. Das, S. Sinha, A. Lodh, A.R. Chintha, M. Krugla, and A. Haldar: Mater. Sci. Technol. (United Kingdom), 2017, vol. 33, pp. 1026–37.

    CAS  Google Scholar 

  5. S.M. Hasan, M. Ghosh, D. Chakrabarti, and S.B. Singh: Mater. Sci. Eng. A, 2020, vol. 771, p. 138590.

    CAS  Google Scholar 

  6. H.K.D.H. Bhadeshia: Bainite in Steels: Transformation, Microstructure and Properties, second edi., The Institute of Materials, London, 2001.

    Google Scholar 

  7. C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila, and C. Garcia De Andres: J. Mater. Sci., 2009, vol. 44, pp. 4617–24.

    CAS  Google Scholar 

  8. A. Barbacki: J. Mater. Process. Tech., 1995, vol. 53, pp. 57–63.

    Google Scholar 

  9. S. Das and A. Haldar: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1844–54.

    Google Scholar 

  10. B.P.J. Sandvik and H.P. Nevalainen: Met. Technol., 1981, vol. 15, pp. 213–20.

    Google Scholar 

  11. Y. Wang, K. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2012, vol. 552, pp. 288–94.

    CAS  Google Scholar 

  12. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, and E. Patoor: Mater. Sci. Eng. A, 2004, vol. 378, pp. 304–7.

    Google Scholar 

  13. S.M. Hasan, D. Chakrabarti, and S.B. Singh: Wear, 2018, vol. 408–409, pp. 151–9.

    Google Scholar 

  14. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Google Scholar 

  15. G.K. Tirumalasetty, M.A. Van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen: Acta Mater., 2012, vol. 60, pp. 1311–21.

    CAS  Google Scholar 

  16. K. Sugimoto, T. Iida, J. Sakaguchi, and T. Kashima: ISIJ Int., 2000, vol. 40, pp. 902–8.

    CAS  Google Scholar 

  17. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert: Mater. Sci. Eng. A, 2007, vol. 447, pp. 285–97.

    Google Scholar 

  18. K.A. Johnson and C.M. Wayman: Acta Crystallogr., 1963, vol. 16, pp. 480–5.

    CAS  Google Scholar 

  19. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–8.

    CAS  Google Scholar 

  20. G. Kurdjumov and G. Sachs: Zeitschrift für Phys., 1930, vol. 64, pp. 325–43.

    Google Scholar 

  21. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    CAS  Google Scholar 

  22. N. Gey, B. Petit, and M. Humbert: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3291–9.

    CAS  Google Scholar 

  23. J.C. Bokros and E.R. Parker: Acta Metall., 1963, vol. 11, pp. 1291–301.

    CAS  Google Scholar 

  24. S. Kundu, A.K. Verma, and V. Sharma: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2552–65.

    Google Scholar 

  25. S. Chatterjee and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 1101–4.

    CAS  Google Scholar 

  26. G.B. Olson and M. Cohen: Metall. Trans. A, 1982, vol. 13A, pp. 1907–14.

    Google Scholar 

  27. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.

    CAS  Google Scholar 

  28. A. Matsuzaki, H.K.D.H. Bhadeshia, and H. Harada: Acta Metall. Mater., 1994, vol. 42, pp. 1081–90.

    CAS  Google Scholar 

  29. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, J.P. Wright, and S. van der Zwaag: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6407–16.

    CAS  Google Scholar 

  30. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, and N.H. van Dijk: Mater. Sci. Eng. A, 2014, vol. 618, pp. 280–7.

    Google Scholar 

  31. B.L. Ennis, E. Jimenez-Melero, E.H. Atzema, M. Krugla, M.A. Azeem, D. Rowley, D. Daisenberger, D.N. Hanlon, and P.D. Lee: Int. J. Plast., 2017, vol. 88, pp. 126–39.

    CAS  Google Scholar 

  32. E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, and T. Mori: Appl. Phys. A Mater. Sci. Process., 2002, vol. 74, pp. S1143–5.

    CAS  Google Scholar 

  33. T.K. Shan, S.H. Li, W.G. Zhang, and Z.G. Xu: Mater. Des., 2008, vol. 29, pp. 1810–6.

    CAS  Google Scholar 

  34. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii: Acta Mater., 2004, vol. 52, pp. 5737–45.

    CAS  Google Scholar 

  35. S.S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivas, and F.G. Caballero: Scr. Mater., 2013, vol. 69, pp. 777–80.

    CAS  Google Scholar 

  36. L. Morales-Rivas, F. Archie, S. Zaefferer, M. Benito-Alfonso, S.P. Tsai, J.R. Yang, D. Raabe, C. Garcia-Mateo, and F.G. Caballero: J. Alloys Compd., 2018, vol. 752, pp. 505–19.

    CAS  Google Scholar 

  37. A. Kisko, R.D.K. Misra, J. Talonen, and L.P. Karjalainen: Mater. Sci. Eng. A, 2013, vol. 578, pp. 408–16.

    CAS  Google Scholar 

  38. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2017, vol. 128, pp. 120–34.

    CAS  Google Scholar 

  39. B.D. Cullity: Elements of X-Ray Diffraction, Second Edi., Addision-Wesley Publishing Company, Inc, 1978.

    Google Scholar 

  40. R.J. Hill and C.J. Howard: J. Appl. Crystallogr., 1987, vol. 20, pp. 467–74.

    CAS  Google Scholar 

  41. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  42. A. Kumar, S.B. Singh, and K.K. Ray: Mater. Sci. Eng. A, 2008, vol. 474, pp. 270–82.

    Google Scholar 

  43. T.S. Byun, E.H. Lee, and J.D. Hunn: J. Nucl. Mater., 2003, vol. 321, pp. 29–39.

    CAS  Google Scholar 

  44. S. Curtze and V.T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.

    CAS  Google Scholar 

  45. H. Gholizadeh: University of Leoben, 2013.

  46. R.K. Ray, P. Chapellier, and J.J. Jonas: Textures Microstruct., 1990, vol. 12, pp. 141–53.

    Google Scholar 

  47. R.P. Reed and R.E. Schramm: J. Appl. Phys., 1974, vol. 45, pp. 4705–11.

    CAS  Google Scholar 

  48. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

    CAS  Google Scholar 

  49. M.F. de Campos, S.A. Loureiro, D. Rodrigues, M.C.A. da Silva, and N.B. de Lima: in Sixth International Latin-American Conference on Powder Technology, Rio de Janeiro, Brazil, 2007, pp. 1–5.

  50. O. Engler: J. Appl. Crystallogr., 2009, vol. 42, pp. 1147–57.

    CAS  Google Scholar 

  51. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Google Scholar 

  52. J.D. Eshelby: Math. Phys. Eng. Sci., 1957, vol. 241, pp. 376–96.

    Google Scholar 

  53. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    CAS  Google Scholar 

  54. G.P. Kang, K. Lee, Y.H. Kim, S.J. Park, and K.S. Shin: Met. Mater. Int., 2017, vol. 23, pp. 930–39.

    CAS  Google Scholar 

  55. D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, eds.: Continuum Scale Simulation of Engineering Materials: Fundamentals – Microstructures – Process Applications, Wiley-VCH, Berlin, 2004.

    Google Scholar 

  56. G.E. Dieter: Mechanical Metallurgy, SI metric., McGraw-Hil Book Company, London, 2007.

    Google Scholar 

  57. S. Takajo, C.N. Tomé, S.C. Vogel, and I.J. Beyerlein: Int. J. Plast., 2018, vol. 109, pp. 137–52.

    CAS  Google Scholar 

  58. J. Jung, J.I. Yoon, D.N. Lee, and H.S. Kim: Acta Mater., 2017, vol. 131, pp. 363–72.

    CAS  Google Scholar 

  59. C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 1637–53.

    CAS  Google Scholar 

  60. B. Bal: Int. J. Steel Struct., 2018, vol. 18, pp. 13–23.

    Google Scholar 

  61. B.A. Mohammed: Michigan State University, 2017.

  62. S.M. Hasan, A. Mandal, S.B. Singh, and D. Chakrabarti: Mater. Sci. Eng. A, 2019, vol. 751, pp. 142–53.

    CAS  Google Scholar 

  63. E. Schmid: Zeitschrift Für Elektrochemie, 1931, vol. 37, p. 447.

    CAS  Google Scholar 

  64. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    CAS  Google Scholar 

  65. J.W. Christian: Metall. Trans. A, 1982, vol. 13A, pp. 509–38.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Indian Institute of Technology Kharagpur for funding the research. The authors also thank Mr. Shbhajit Mitra of Tata Steel Limited, Jamshedpur, India, for his help in carrying out the macrotexture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Md. Hasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 14, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S.M., Ghosh, A., Chakrabarti, D. et al. Orientation Dependence of Deformation-Induced Martensite Transformation During Uniaxial Tensile Deformation of Carbide-Free Bainitic Steel. Metall Mater Trans A 51, 2053–2063 (2020). https://doi.org/10.1007/s11661-020-05694-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05694-4

Navigation