Skip to main content
Log in

Corrosion and Mechanical Performance of Grade 92 Ferritic-Martensitic Steel After Exposure to Supercritical Carbon Dioxide

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grade 92 ferritic-martensitic steel is a candidate alloy for medium temperature (< 550 °C) components for the supercritical carbon dioxide (s-CO2) Brayton cycle. 1000 hours exposures were performed on base and welded material in s-CO2 at temperatures of 450 °C or 550 °C and compared to samples aged in Ar at 550 °C. Both s-CO2 exposures resulted in a duplex oxide growth and carburization, with 450 °C exhibiting carburization in a power law diffusion profile up to a depth of 200-250 µm, while 550 °C showed a linear profile up to a depth of 100 µm. The different profiles indicate much slower precipitation and coarsening of carbides at the lower temperature, allowing carbon to diffuse deeper into the material. However, 450 °C produced improved mechanical properties while 550 °C produced deteriorated properties. This was due to the higher density of carbon near the metal–oxide interface which leads to significant carbide coarsening and, subsequently, crack initiation and early failure. Additional exposure at 450 °C is predicted to increase deposited carbon, but further study would be needed to understand if and when carburization will produce a negative mechanical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] V. Dostal, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Massachusetts Institute of Technology, Cambridge, 2004.

    Google Scholar 

  2. [2] Y. Kato, T. Nitawaki, and Y. Muto: Nucl. Eng. Des., 2004, vol. 230, no. 1–3, pp. 195–207.

    Article  CAS  Google Scholar 

  3. I. G. Wright, B. A. Pint, J. P. Shingledecker, and D. Thimsen, “Materials Considerations for Supercritical CO2 Turbine Cycles,” in ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.

  4. [4] R. L. Klueh and A. T. Nelson: J. Nucl. Mater., 2007, vol. 371, no. 1–3, pp. 37–52.

    Article  CAS  Google Scholar 

  5. [5] S. S. Wang, D. L. Peng, L. Chang, and X. D. Hui: Mater. Des., 2013, vol. 50, pp. 174–180.

    Article  CAS  Google Scholar 

  6. [6] J. C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, and C. Jochum: Int. J. Press. Vessel. Pip., 2008, vol. 85, no. 1–2, pp. 38–46.

    Article  Google Scholar 

  7. [7] A. Vyrostkova, V. Homolova, J. Pecha, and M. Svoboda: Mater. Sci. Eng. A, 2008, vol. 480, no. 1–2, pp. 289–298.

    Article  Google Scholar 

  8. [8] P. J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz: Acta Mater., 1997, vol. 45, no. 12, pp. 4901–4907.

    Article  CAS  Google Scholar 

  9. [9] Y. Gong, D. J. Young, P. Kontis, Y. L. Chiu, H. Larsson, A. Shin, J. M. Pearson, M. P. Moody, and R. C. Reed: Acta Mater., 2017, vol. 130, pp. 361–374.

    Article  CAS  Google Scholar 

  10. [10] R. Viswanathan and W. Bakker: J. Mater. Eng. Perform., 2001, vol. 10, no. 1, pp. 81–95.

    Article  CAS  Google Scholar 

  11. [11] S. G. Hong, W. B. Lee, and C. G. Park: J. Nucl. Mater., 2001, vol. 288, no. 2–3, pp. 202–207.

    Article  CAS  Google Scholar 

  12. M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1255–1262.

    Article  CAS  Google Scholar 

  13. S. Kunimitsu, Y. You, N. Kasuya, Y. Sasaki, and Y. Hosoi: J. Nucl. Mater., vol. 179, pp. 689–692, 1991.

    Article  Google Scholar 

  14. L. Tan, D. T. Hoelzer, and J. T. Busby, “Microstructure and Basic Mechanical Properties of the Procured Advanced Alloys for the Advanced Radiation Resistant Materials Program,” No. ORNL/TM-2014/439, 2014.

  15. M. N. Arik, Corrosion of Ferritic Steels in Supercritical CO2 at 450 °C. University of Wisconsin-Madison, Madison, 2017.

    Google Scholar 

  16. F. Rouillard, G. Moine, M. Tabarant, and J. C. Ruiz: Oxid. Met., 2012, vol 77, pp. 57–70.

    Article  CAS  Google Scholar 

  17. F. Rouillard and T. Furukawa: Corros. Sci., 2016, vol. 105, pp. 120–132.

    Article  CAS  Google Scholar 

  18. [18] D. Young, P. Huczkowski, T. Olszewski, T. Hüttel, L. Singheiser, and W. J. Quadakkers: 2014, Corros. Sci., vol. 88, pp. 161–169.

    Article  CAS  Google Scholar 

  19. [19] L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, and K. Rousseau: Corros. Sci., 2015, vol. 100, pp. 253–266.

    Article  CAS  Google Scholar 

  20. [20] F. Rouillard, G. Moine, L. Martinelli, and J. C. Ruiz: Oxid. Met., 2012, vol. 77, pp. 27–55.

    Article  CAS  Google Scholar 

  21. [21] M. G. C. Cox, B. McEnaney, and V. D. Scott: Nature, 1972, vol. 237, no. 78, pp. 140–142.

    Article  CAS  Google Scholar 

  22. G. B. Gibbs, R. E. Pendlebury, and M. R. Wootton, “Protective and breakaway corrosion of mild steel in CO2,” in Proceedings of the British Nuclear Engergy Society International Conference on Corrosion of Steels in CO2, 1974.

  23. [23] R. P. Oleksak, J. H. Tylczak, C. S. Carney, G. R. Holcomb, and O. N. Dogan: JOM, 2018, vol. 70, no. 8, pp. 1527–1534.

    Article  CAS  Google Scholar 

  24. [24] J. T. Mahaffey, “Effect of Partial Pressure of Oxygen and Activity of Carbon on the Corrosion of High Temperature Alloys in s-CO2 Environments,” University of Wisconsin-Madison, Madison, 2017.

    Google Scholar 

  25. [25] D. J. Young, High Temperature Oxidation and Corrosion of Metals, 1st ed. Elsevier, Amsterdam, 2008.

    Google Scholar 

  26. W. Marshall, Z. Zhang, and G. B. Holloway, “Welding Consumables for P92 and T23 Creep Resisting Steels,” in Fifth International EPRI RRAC Conference, 2002.

  27. ASME, “Code Cases - Boilers and Pressure Vessels,” in ASME Boiler and Pressure Vessel Code, 2015.

  28. [28] A. M. Brittan, J. Mahaffey, M. Anderson, and K. Sridharan: Mater. Sci. Eng. A, 2019, vol. 742, pp. 414–422.

    Article  CAS  Google Scholar 

  29. J. Mahaffey, D. Adam, M. Anderson, and K. Sridharan, “Effect of oxygen impurity on corrosion in supercritical CO2 environments,” in The 5th International Supercritical CO2 Power Cycles Symposium, 2016.

  30. [30] J. Mahaffey, D. Adam, A. Brittan, M. Anderson, and K. Sridharan: Oxid. Met., 2016, vol. 86, no. 5–6, pp. 567–580.

    Article  CAS  Google Scholar 

  31. J. D. Tucker, B. Adam, M. Anderson, B. Pint, G. R. Holcomb, C. S. Carney, H. Saari, L. Teeter, J. Mahaffey, O. Dogan, C. Jang, and S. Kung, “Supercritical CO2 round robin test program,” in The 6th International Supercritical CO2 Power Cycles Symposium, 2018.

  32. [32] G. Chen, Q. Zhang, J. Liu, J. Wang, X. Yu, J. Hua, X. Bai, T. Zhang, J. Zhang, and W. Tang: Mater. Des., 2013, vol. 44, pp. 469–475.

    Article  CAS  Google Scholar 

  33. [33] J. A. Francis, W. Mazur, and H. K. D. H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, no. 12, pp. 1387–1395.

    Article  CAS  Google Scholar 

  34. B. Weiss and R. Stickler: Metall. Trans., 1972, vol. 3, pp. 851–866.

    Article  CAS  Google Scholar 

  35. [35] F. Penalba, X. Gomez-Mitxelena, J. A. Jimenez, M. Carsi, and O. A. Ruano: ISIJ Int., 2016, vol. 56, no. 9, pp. 1662–1667.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the contributions made to this work by Paul Brooks, Peter Li, and Ryan Carroll at the University of Wisconsin-Madison. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA-0003525.

Funding

This work was supported by Advance supercritical carbon dioxide cycles [DE-EE0007120] and the U.S. Department of Energy.

Data Availability

The raw data used for this work is available upon request from the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Brittan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brittan, A., Mahaffey, J. & Anderson, M. Corrosion and Mechanical Performance of Grade 92 Ferritic-Martensitic Steel After Exposure to Supercritical Carbon Dioxide. Metall Mater Trans A 51, 2564–2572 (2020). https://doi.org/10.1007/s11661-020-05691-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05691-7

Navigation