Skip to main content
Log in

GD Map Method for Analyzing Effects of Elements on Size Control of In Situ Formed Mg2Si in Mg Melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An approach for selecting alloying elements to control the size of an in situ formed phase is proposed based on a G–D map, which is derived from basic thermodynamic and kinetic principles. The G–D map is divided into four zones. Elements in Zone III are potential refiners whereas those in Zone II should be avoided in processing. When applied to the Mg2Si/Mg system, we find that Sr, P, Sb and Sn refine Mg2Si by increasing the nucleation rate and inhibiting the growth rate. Conversely, Ti, Mn, Zr and V contribute to coarse-shaped Mg2Si by postponing nucleation. The content of alloying elements should be matched with the Si content, and the required amount can be pre-estimated from the G–D map. Mg2Si formed in Mg-Al and Mg-Zn alloy is smaller than that in Mg-Si and Mg-Mn alloy, because Al and Zn suppress the diffusion of Si, particularly at high Si contents. The predictions of this approach are consistent with experimental observations. Hence, the G–D map can provide useful guidance for quantitative phase refinement design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. 1. L. Lu, K. Thong, and M. Gupta: Composites Science and Technology, 2003, vol.63, pp. 627-632.

    CAS  Google Scholar 

  2. 2. K. Asano and H. Yoneda: Materials Transactions. 2007, vol.48, pp. 1469-1475.

    CAS  Google Scholar 

  3. 3. S. Thakur, B. Dhindaw, N. Hort, and K. Kainer: Metallurgical and Materials Transactions A. 2004, vol.35, pp. 1167-1176.

    CAS  Google Scholar 

  4. 4. J. He, B. Jiang, H. Xie, Z. Jiang, B. Liu and F. Pan: Materials Science and Engineering: A. 2016, vol.675, pp. 76-81.

    CAS  Google Scholar 

  5. 5. E. Schmid, K. Von Oldenburg and G. Frommeyer: International Journal of Materials Research, 1990, vol.81, pp. 809-815.

    CAS  Google Scholar 

  6. 6. M. Mabuchi, K. Kubota, and K. Higashi: Materials science and technology. 1996, vol.12, pp. 35-39.

    CAS  Google Scholar 

  7. 7. Y. Lü, Q. Wang, X. Zeng, Y. Zhu, and W. Ding: Materials Science and Engineering: A. 2001, vol.301, pp. 255-258.

    Google Scholar 

  8. 8. M. Mabuchi, K. Kubota, and K. Higashi: Scripta metallurgica et materialia. 1995, vol.33, pp. 331-335.

    CAS  Google Scholar 

  9. 9. M.O. Pekguleryuz and M.M. Avedesian: Journal of Japan Institute of Light Metals, 1992, vol.42, pp. 679-686.

    Google Scholar 

  10. 10. Y. Pan, X. Liu, and H. Yang: Materials Characterization. 2005, vol.55, pp. 241-247.

    CAS  Google Scholar 

  11. 11. G. Yuan, M. Liu, Q. Wang and Y. Zhu: Acta Metallrugica Sinica, 2002, vol.56, pp. 53-58.

    CAS  Google Scholar 

  12. X.H. Guo, J. Du, W.F. Li and J.H. Peng: Chinese Journal of Nonferrous Metals, 2010, vol. 20, pp. 24-29.

    CAS  Google Scholar 

  13. 13. R. Alizadeh and R. Mahmudi: Journal of Alloys and Compounds. 2011, vol.509, pp. 9195-99.

    CAS  Google Scholar 

  14. 14. A. Srinivasan, U. Pillai, and B. Pai: Metallurgical and Materials Transactions A. 2005, vol.36, pp. 2235-2243.

    CAS  Google Scholar 

  15. 15. H.Y. Wang, Q. Li, B. Liu, N. Zhang, L. Chen and J.G. Wang: Metallurgical and Materials Transactions A, 2012, vol.43, pp. 4926-4932.

    Google Scholar 

  16. 16. M. Yang, P. Fusheng, C. Renju, and S. Jia: Materials Science and Engineering A. 2012, vol.489, pp. 413-418.

    Google Scholar 

  17. 17. J.J. Kim, D.H. Kim, K. Shin, and N.J. Kim: Scripta Materialia. 1999, vol.41, pp. 333-340.

    CAS  Google Scholar 

  18. 18. G. Yuan, M. Liu, W.Ding and I. Akihisa: Materials Science and Engineering: A. 2003, vol.357, pp. 314-320.

    Google Scholar 

  19. 19. S.Q. Tang, J.X. Zhou, C.W. Tian and Y.S. Yang: Transactions of Nonferrous Metals Society of China. 2011, vol.21, pp. 1932-1936.

    CAS  Google Scholar 

  20. 20. K.Y. Nam, D.H. Song, C.W. Lee, S.W. Lee, Y.H. Park, K.M. Cho and I.M. Park: Materials Science Forum. 2006, vol.510-511, pp. 238-241.

    Google Scholar 

  21. 21. R.J. Cheng, A.T. Tang, M.B. Yang and F.S. Pan: Materials Science Forum. 2007, vol.546-549, pp. 183-186.

    Google Scholar 

  22. 22. Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma and J.G. Wang: Materials Science and Engineering A. 2005, vol.392, pp. 130-135.

    Google Scholar 

  23. 23. L. Ye, J. Hu, C. Tang, X. Zhang, Y. Deng, Z. Liu, and Z. Zhou: Materials Characterization. 2013, vol.79, pp. 1-6.

    CAS  Google Scholar 

  24. 24. H. Yi and Z. Di: Materials Letters, 2003, vol.57, pp. 2523-2529.

    CAS  Google Scholar 

  25. 25. C.L. Xu, Q.C. Jiang, Y.F. Yang, H.Y. Wang and J.G. Wang: Journal of Alloys and Compounds. 2006, vol.422, pp. L1-L4.

    CAS  Google Scholar 

  26. 26. A.A. Nayeb-Hashemi and J.B. Clark: Journal of Phase Equilibria, 1984, vol.5, pp. 584-592.

    Google Scholar 

  27. K. Kelton and A.L. Greer: Nucleation in condensed matter: applications in materials and biology, Vol. 15. 2010: Elsevier, Amterdam.

    Google Scholar 

  28. S.E. Offerman, N.H. Dijk, J. Van Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt and S. Van Der Zwaag: Science, 2002, vol. 21, pp. 179-179.

    Google Scholar 

  29. 29. I. Maxwell and A. Hellawell: Acta Metallurgica. 1975, vol.23, pp. 229-237.

    CAS  Google Scholar 

  30. 30. W. Tiller, K. Jackson, J. Rutter, and B. Chalmers: Acta metallurgica. 1953, vol.1, pp. 428-437.

    CAS  Google Scholar 

  31. W. Kurz and D.J. Fisher: Fundamentals of solidition, 4th ed., Trans Tech Publication Ltd, Uetikon, 1998, pp. 21-45

    Google Scholar 

  32. 32. Y.J. Liang and Y.C. Che: Themodynamical properties of inorganic substances, Northeastern University Press, Shengyang, China, 1993, pp. 153

    Google Scholar 

  33. 33. L.S. Darken: Transactions of the Metallurgical Society of AIME, 1948, vol.175, pp. 184-201.

    Google Scholar 

  34. 34. J. Chen, T. Fan and D. Zhang: Metallurgical and Materials Transactions A, 2006, vol.37, pp. 2275-2281.

    Google Scholar 

  35. 35. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, London Institute of Metals, London, 1987,PP. 233

    Google Scholar 

  36. 36. G. Schwitzgebel and G. Langen: Journal for Nature Research A, 1981, vol.36, pp. 1225-1232.

    Google Scholar 

  37. 37. T. Fan, G. Yang, and D. Zhang: Metallurgical and Materials Transactions A. 2005, vol.36, pp. 225-233.

    Google Scholar 

  38. 38. T. Fan, C. Zhang, J. Chen, and D. Zhang: Metallurgical and Materials Transactions A. 2009, vol.40, pp. 2743–50.

    Google Scholar 

  39. 39. H.B. Aaron, D. Fainstein and G.R. Kotler: Journal of Applied Physics, 1970, vol.41, pp. 4404-4410.

    Google Scholar 

  40. 40. J.D. Hunt: Materials Science and Engineering, 1984, vol.65, pp. 75-83.

    CAS  Google Scholar 

  41. P.D. Quimby, S.Z. Lu, M.R. Plichta, D.K. Visser and K.P. Jacobe: Magnesium Technology 2006, TMS annual Meeting,Texas, 2006, vol. 2006, pp. 535–37.

  42. 42. C. Zhang, T. Fan, W. Cao, J. Ding, and D. Zhang: Composites Science and Technology. 2009, vol.69, pp. 2688-2694.

    CAS  Google Scholar 

  43. G. Zhang, D.U. Jun, L.I. Wen-Fang, Q. Dou, and T.X. Cai: J. Mater. Eng., 2013, pp. 81–84.

  44. 44. Y. Li, W. Tian, Q. Hu and Y. Yan: Special Casting and Nonferrous Alloys, 2007, vol.27, pp.293-297

    Google Scholar 

  45. 45. J. Zhang, Z. Fan, Y. Wang, and B. Zhou: Scripta Materialia. 2000, vol.42, pp. 1101-1106.

    CAS  Google Scholar 

  46. 46. A. Crawley: International Metallurgical Reviews. 1974, vol.19, pp. 32-48.

    CAS  Google Scholar 

  47. 47. A.K. Niessen, F. De Boer, R. Boom, P. De Chatel, W. Mattens and A. Miedema: Calphad, 1983, vol.7, pp. 51-70.

    CAS  Google Scholar 

  48. R.I. Guthrie and T. Iida (1987) The physical properties of liquid metals. Clarendon Press, New York, pp. 47-70

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the National Key Research and Development Plan (No. 2017YFB0703101) and the National Natural Science Foundation of China (No. 51821001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongxiang Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 12, 2019.

Appendix A

Appendix A

1.1 Calculation of the Self-diffusion Coefficient \( D_{i}^{*} \)

The self-diffusion coefficient for binary liquid alloys based on hard sphere theory is given by Reference 36:

$$ D_{i}^{*} = \frac{{l_{i} }}{2}\left( {\frac{\pi RT}{{M_{i} }}} \right)^{1/2} \frac{C\left( \eta \right)}{{Z_{x} - 1}}, $$
(A1)

where \( l_{i} \) and \( M_{i} \) are the atom radius and molar mass of component i, \( Z_{x} \) is the compressibility factor, and \( C\left( \eta \right) \) is the correction factor.

$$ l_{i} = \left( {\frac{{3\eta_{i} M_{i} }}{{4\pi N_{o} \rho_{i} }}} \right)^{1/3} , $$
(A2)
$$ C\left( \eta \right) = \frac{{0.73\eta_{m} }}{\eta }, $$
(A3)

where \( \rho_{i} \) is the density of component i, which can be obtained in Reference 46 and is shown in Table A2. \( N_{o} \) is the Avogadro number, and \( \eta_{i} \) is the packing fraction, hence:

$$ \eta_{i} = - 3.57 \times 10^{ - 2} + 1.367 \times 10^{ - 1} Z_{i} - 1.747 \times 10^{ - 2} Z_{i}^{2} + 1.225 \times 10^{ - 3} Z_{i}^{3} - 3.508 \times 10^{ - 5} Z_{i}^{4} . $$
(A4)
$$ Z_{x} = \frac{{9.385\rho_{x} }}{{M_{x} T}}\left( {\sqrt {\frac{{M_{i} T_{i} }}{{\rho_{{m_{i} }} }}} x_{i} + \sqrt {\frac{{M_{j} T_{j} }}{{\rho_{{m_{j} }} }}} \left( {1 - x_{i} } \right)} \right), $$
(A5)

where T and \( T_{i} \) are the temperature of the liquid melt and the melting temperature of component i;\( \rho_{{m_{i} }} \) is the density of component i at the melting temperature; \( M_{x} \) and \( \rho_{x} \) are respectively the molar mass and the density of the liquid:

$$ M_{x} = x_{i} M_{i} + \left( {1 - x_{i} } \right)M_{j} , $$
(A6)
$$ \rho_{x} = \frac{{M_{x} }}{{x_{i} M_{i} /\rho_{i} + (1 - x_{i} )M_{j} /\rho_{j} }}, $$
(A7)

From Eqs. [A2] through [A7], the self-diffusion coefficient of \( D_{\text{Si}}^{*} \), \( D_{\text{Mg}}^{*} \) and \( D_{X}^{*} \) can be calculated.

1.2 Calculation of the Activity \( a \)

According to the ternary activity model introduced by Fan et al.[37,38] in i − j − k ternary systems, we extended it into quaternary system i − j − h − k:

$$ lna_{i} = 1 + lnx_{i} - \ln \left( {1 - \mathop \sum \limits_{j} x_{j} A_{ji} } \right) - \mathop \sum \limits_{j} \left( {\frac{{x_{j} \left( {1 - A_{ij} } \right)}}{{1 - \mathop \sum \nolimits_{k} x_{k} A_{kj} }}} \right), $$
(A8)

The pair of adjustable parameters, \( A_{ij} \) and \( A_{ji} \), were solved by:

$$ \frac{{a_{ij} f_{ij} \left( {1 + u_{i} \left( {\psi_{i} - \psi_{j} } \right)} \right)}}{{RTV_{j}^{2/3} }} = A_{ij} - { \ln }( 1- A_{ij} ), $$
(A9)

where \( a_{ij} , f_{ij} \) is denoted as:

$$ a_{ij} = 1 - 0.1T\left( {\frac{1}{{T_{i} }} + \frac{1}{{T_{j} }}} \right), $$
(A10)
$$ f_{ij} = \frac{{2pV_{i}^{2/3} V_{j}^{2/3} \{ 9.4\left( {n_{i}^{{\frac{1}{3}}} - n_{j}^{{\frac{1}{3}}} } \right)^{2} - \left( {\psi_{i} - \psi_{j} } \right)^{2} - 0.73\left( {r/p} \right)}}{{(n_{i}^{{\frac{1}{3}}} )^{ - 1} - (n_{j}^{{\frac{1}{3}}} )^{ - 1} }}, $$
(A11)

where \( \psi \) is the electron density, V is the molar volume, and \( n \) is the Wigner-Seitz electron density at the cell boundary; r, b and \( p \) are model parameters in the Miedema model, and their values can be found in References 47, 48, which are listed in Table A2.

See Tables A1 and A2.

Table A1 Standard Gibbs Free Energy Change[32]
Table A2 Values of Parameters Used in the Calculations[46,47,48]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Sun, Z., Liu, Y. et al. GD Map Method for Analyzing Effects of Elements on Size Control of In Situ Formed Mg2Si in Mg Melts. Metall Mater Trans A 51, 2359–2365 (2020). https://doi.org/10.1007/s11661-020-05670-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05670-y

Navigation