Skip to main content
Log in

Effect of Microstructure and Texture Evolution on the Electrochemical Corrosion Behavior of Warm-Rolled API 5L X70 Pipeline Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermomechanical treatments were used to improve the corrosion resistance of API 5L X70 pipeline steel materials. Successive warm rolling was performed at consistently reduced temperatures; 700 °C, 600 °C, and 500 °C. Steel plates comprised of different ferrite grain sizes were produced. However, the finest grain distribution was achieved at 700 °C rolling temperature. A combination of electron backscattered diffraction and X-ray diffraction (XRD) techniques were used to determine weak texture (i.e., preferred grain orientation) across all specimens. Grain orientation showed deviation toward the 〈111〉 direction at the surface of 700 °C rolled steel. After deformation at 600 °C, mostly 〈110〉 grains oriented parallel to the normal direction were obtained. Rolling at 500 °C resulted in random orientation of grains. Corrosion results show that anodic dissolution increased as the rolling temperature decreased in the order 700 °C > 600 °C > 500 °C for hydrogen-producing and non-hydrogen-producing test media. Also, molecular dynamics (MD) simulation confirmed that the adsorption energy of corrosive species interacting with the iron (Fe) surface increased in the order of Einteraction (111) < Einteraction (110) < Einteraction (100) for the two types of electrolytes. The relationships between the molecular species interacting in each corrosive media and selected crystal planes (i.e., (111), (110), and (100)) were established. X-ray photoelectron spectroscopy (XPS) confirmed that the adsorbed corrosion film on all tested steels are Fe2O3 (Fe2+) and hydrated ferric oxides such as FeOOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.E. Perez: JOM, 2013, vol. 65, pp. 1033–42.

    CAS  Google Scholar 

  2. E. Ohaeri, U. Eduok, and J. Szpunar: Int. J. Hydr. Energy, 2018, vol. 43, pp. 14584–14617.

    CAS  Google Scholar 

  3. X.J. Shen, S. Tang, Y.J. Wu, X.L. Yang, J. Chen, Z.Y. Liu, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2017, vol. 685, pp. 194–204.

    CAS  Google Scholar 

  4. M. Masoumi, L. Flavio, G. Herculano, H. Ferreira, and G. De Abreu: Mater. Sci. Eng. A, 2015, vol. 639, pp. 550–58.

    CAS  Google Scholar 

  5. E. Ohaeri, J. Omale, A. Tiamiyu, K.M.M. Rahaman, and J. Szpunar: J. Mater. Eng. Perform., 2018, vol. 27, pp. 4533–47.

    CAS  Google Scholar 

  6. R. Srinivasan and T. Neeraj: JOM, 2014, vol. 66, pp. 1377–82.

    CAS  Google Scholar 

  7. E. Ohaeri, J. Omale, U. Eduok, and J. Szpunar: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2269–80.

    Google Scholar 

  8. T.Y. Jin, Z.Y. Liu, and Y.F. Cheng: Int. J. Hydr. Energy, 2010, vol. 35, pp. 8014–21.

    CAS  Google Scholar 

  9. H.B. Xue and Y.F. Cheng: J. Mater. Eng. Perform., 2013, vol. 22, pp. 170–75.

    CAS  Google Scholar 

  10. T. Alp, B. Dogan, and T.J. Davies: J. Mater. Sci., 1987, vol. 22, pp. 2105–12.

    CAS  Google Scholar 

  11. E. Ohaeri, J. Szpunar, F. Fazeli, and M. Arafin: Mater. Charact., 2018, vol. 145, pp. 142–56.

    CAS  Google Scholar 

  12. L. Dai, D. Wang, T. Wang, Q. Feng, and X. Yang: J. Petrol. Eng., 2017, pp. 1–7.

  13. C. Lam and W. Zhou: Int. J. Press. Vess. Pip., 2016, vol. 145, pp. 29–40.

    Google Scholar 

  14. C.I. Ossai, B. Boswell, and I.J. Davies: Eng. Fail. Analysis, 2015, vol. 53, pp. 36–58.

    Google Scholar 

  15. T. Wen, H. Bin, W. Shui-ze, Y. Yi, Z. Chao, and Z. Yong-kun: J. Iron Steel Res., 2012, vol. 19, pp. 37–41.

    Google Scholar 

  16. V. Carretero-Olalla, V. Bliznuk, N. Sanchez, P. Thibaux, L.A.I. Kestens, and R.H. Petrov: Mater. Sci. Eng. A, 2014, vol. 604, pp. 46–56.

    CAS  Google Scholar 

  17. S. Nafisi, M.A. Arafin, L. Collins, and J. Szpunar: Mater. Sci. Eng. A, 2012, vol. 531, pp. 2–11.

    CAS  Google Scholar 

  18. P. Siahpour, R. Miresmaeili, and A. Sabour Rouhaghdam: Trans. Ind. Inst. Met., 2018, vol. 71, pp. 1531–41.

    CAS  Google Scholar 

  19. G. H. Akbari, C.M. Sellars, and J.A. Whiteman: Acta Mater., 1997, vol. 45, pp. 5047–58.

    CAS  Google Scholar 

  20. S.H. Sun, Y. Xiong, J. Zhao, Z.Q. Lv, Y. Li, D.L. Zhao, and W.T. Fu: Scripta Mater., 2005, vol. 53, pp. 137–40.

    CAS  Google Scholar 

  21. M. Sánchez-Araiza, S. Godet, P.J. Jacques, and J.J. Jonas: Acta Mater., 2006, vol. 54, pp. 3085–93.

    Google Scholar 

  22. D. Raabe: Steel Res. Int., 2003, vol. 74, pp. 327–37.

    CAS  Google Scholar 

  23. J. Hu, L.X. Du, H. Xie, P. Yu, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 605, pp. 186–91.

    CAS  Google Scholar 

  24. F. Gao, Z. Liu, H. Liu, and G. Wang: J. Alloys Compd., 2013, vol. 567, pp. 141–47.

    CAS  Google Scholar 

  25. A.A. Gazder, M. Sánchez-Araiza, J.J. Jonas, and E.V. Pereloma: Acta Mater., 2011, vol. 59, pp. 4847–65.

    CAS  Google Scholar 

  26. K. Handa, Y. Kimura, Y. Yasumoto, T. Kamioka, and Y. Mishima: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1926–32.

    Google Scholar 

  27. T. Schambron, A. Dehghan-Manshadi, L. Chen, T. Gooch, C. Killmore, and E. Pereloma: Met. Mater. Int., 2017, vol. 23, pp. 778–87.

    CAS  Google Scholar 

  28. S.H. Cho, K.B. Kang, and J.J. Jonas: Mater. Sci. Technol., 2002, vol. 18, pp. 389–95.

    CAS  Google Scholar 

  29. C. Deamartins, E. Poliak, L.B. Godefroid, and N. Fonstein: ISIJ Int., 2014, vol. 54, pp. 227–34.

    Google Scholar 

  30. M. Sanchez-Ariza, S. Godet, and J.J. Jonas: Mater. Sci. Forum, 2005, vols. 495–497, pp. 501–06.

    Google Scholar 

  31. E.V. Pereloma, I.B. Timokhina, J.J. Jonas, and M.K. Miller: Acta Mater., 2006, vol. 54, pp. 4539–51.

    CAS  Google Scholar 

  32. B. Hutchinson, N. Hansen, P. van Houtte, and D. Juul Jensen: JSTOR, 1999, vol. 357, pp. 1471–85

    CAS  Google Scholar 

  33. R. Riastuti, M. Bastian, D. Priadi, and E.S. Siradj: Adv. Mater. Res., 2011, vols. 383–390, pp. 5869–73.

    Google Scholar 

  34. H. Wang and C. Yu: Int. J. Electrochem. Sci., 2017, vol. 12, pp. 4327–40.

    CAS  Google Scholar 

  35. A.H. King and S. Shekhar: J. Mater. Sci., 2006, vol. 41, pp. 7675–82.

    CAS  Google Scholar 

  36. A.A. Tiamiyu, M. Eskandari, M. Sanayei, A.G. Odeshi, and J.A. Szpunar: Mater. Sci. Eng. A, 2016, vol. 673, pp. 400–16.

    CAS  Google Scholar 

  37. NACE International Task Group (TG) 070: Field Monitoring of Corrosion Rates in Oil and Gas Production Environments Using Electrochemical Techniques, NACE, Houston, TX, 2014.

    Google Scholar 

  38. NACE TM 0284-2016: Standard Test Method Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE, Houston, 2016.

    Google Scholar 

  39. H.A. Masayuki Sagara, Y. Tomio, Y. Otome, N. Sawawatari, and T. Omura: NACE Corrosion Conference & Expo, NACE, Houston, TX, 2016, pp. 1–15.

  40. F. Thebault, S. Frappart, L. Delattre, H. Marchebois, and L.A. Rochelle: NACE Corrosion Conference & Expo, NACE, Houston, TX, 2011, pp. 1–14.

    Google Scholar 

  41. K.O. Sulaiman, A.T. Onawole, O. Faye, and D.T. Shuaib: J. Molec. Liq., 2019, vol. 279, pp. 342–50.

    CAS  Google Scholar 

  42. R. Pandi and S. Yue: ISIJ Int., 1994, vol. 34, pp. 270–79.

    CAS  Google Scholar 

  43. D.B. Santos, R.K. Bruzszek, P.C.M. Rodrigues, and E. V. Pereloma: Mater. Sci. Eng. A, 2003, vol. 346, pp. 189–95.

    Google Scholar 

  44. C. Medrea-Bichtas, I. Chicinas, and S. Domsa: Z. Metallkd., 2002, vol. 93, 554-558.

    CAS  Google Scholar 

  45. A. Haldar and R.K. Ray: Mater. Sci. Eng. A, 2005, vol. 391, pp. 402–07.

    Google Scholar 

  46. A. Belyakov, R. Kaibyshev, and V. Torganchuk: Steel Res. Int., 2017, vol. 88, pp. 171–75.

    CAS  Google Scholar 

  47. B. Hu and H. Luo: J. Alloys Compd., 2017, vol. 725, pp. 684–93.

    CAS  Google Scholar 

  48. S. Serajzadeh: Mater. Sci. Eng. A, 2004, vol. 371, pp. 318–23.

    Google Scholar 

  49. B. Koohbor, D. Ohadi, S. Serajzadeh, and J.M. Akhgar: J. Mater. Sci., 2010, vol. 45, pp. 3405–12.

    CAS  Google Scholar 

  50. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, pp. 25–42.

    CAS  Google Scholar 

  51. J.I. Omale, E.G. Ohaeri, J.A. Szpunar, M. Arafin, and F. Fateh: Mater. Charact., 2019, vol. 147, pp. 453–63.

    CAS  Google Scholar 

  52. A.S. Magalhães, C.E. dos Santos, A.O.V. Ferreira, D.S. Alves, and D.B. Santos: Mater. Sci. Technol., 2018, vol. 0836, pp. 1–14.

    Google Scholar 

  53. S. Gollapudi: Corr. Sci., 2012, vol. 62, pp. 90–94.

    CAS  Google Scholar 

  54. C.D. Terwilliger and Y.M. Chiang: Acta Metall. Mater., 1995, vol. 43, pp. 319–28.

    CAS  Google Scholar 

  55. V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, and R. Penelle: Scripta Mater., 2005, vol. 52, pp. 147–52.

    CAS  Google Scholar 

  56. M.A. Arafin and J.A. Szpunar: Corr. Sci., 2009, vol. 51, pp. 119–28.

    CAS  Google Scholar 

  57. V. Venegas, F. Caleyo, J.M. Hallen, T. Baudin, and R. Penelle: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1022–31.

    CAS  Google Scholar 

  58. H. Yu: J. Univ. Sci. Technol. Beijing: Miner. Metall. Mater. (Eng Ed.), 2008, vol. 15, pp. 683–87.

    CAS  Google Scholar 

  59. M.R. Toroghinejad, A.O. Humphreys, F. Ashrafizadeh, A. Najafizadeh, and J.J. Jonas: Mater. Sci. Forum, 2003, vols. 426–432, pp. 3691–96.

    Google Scholar 

  60. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 706–14.

    CAS  Google Scholar 

  61. A.A. Tiamiyu, V. Tari, J.A. Szpunar, A.G. Odeshi, and A.K. Khan: Int. J. Plast., 2018, vol. 107, pp. 79–99.

    CAS  Google Scholar 

  62. C.K. Syn, D.R. Lesuer, and O.D. Sherby: Mater. Sci. Technol., 2005, vol. 21, pp. 317–24.

    CAS  Google Scholar 

  63. S. Boakye-Yiadom, A. Khaliq-Khan, and N. Bassim: Mater. Sci. Eng. A, 2014, vol. 615, pp. 373–94.

    CAS  Google Scholar 

  64. S. Lee and B.C. De Cooman: ISIJ Int., 2011, vol. 51, pp. 1545–52.

    CAS  Google Scholar 

  65. R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar: ISIJ Int., 2009, vol. 49, pp. 78–85.

    CAS  Google Scholar 

  66. A.O. Humphreys, D. Liu, M.R. Toroghinejad, E. Essadiqi, and J.J. Jonas: Mater. Sci. Technol., 2003, vol. 19, pp. 709–14.

    CAS  Google Scholar 

  67. H. Inagaki: ISIJ Int., 1994, vol. 34, pp. 313–21.

    CAS  Google Scholar 

  68. S. Matsuoka, M. Morita, O. Furukimi, and T. Obara: ISIJ Int., 1998, vol. 38, pp. 633–39.

    CAS  Google Scholar 

  69. M.R. Barnett and J.J. Jonas: ISIJ Int., 1999, vol. 39, pp. 856–73.

    CAS  Google Scholar 

  70. K. Ushioda, W.B. Hutchinson, J. Agren, and U. Von Schlippenbach: Mater. Sci. Technol., 1986, vol. 2, pp. 807–15.

    CAS  Google Scholar 

  71. D.R. Gabe: Trans. IMF, 2005, vol. 83, pp. 121–24.

    CAS  Google Scholar 

  72. K. Morshed-Behbahani, P. Najafisayar, M. Pakshir, and N. Zakerin: Corr. Eng. Sci. Technol., 2019, vol. 54, pp. 174–83.

    CAS  Google Scholar 

  73. A.A. Tiamiyu, U. Eduok, J.A. Szpunar, and A.G. Odeshi: Scient. Rep., 2019, vol. 9, pp. 1–18.

    CAS  Google Scholar 

  74. K.D. Ralston, N. Birbilis, and C.H.J. Davies: Scripta Mater., 2010, vol. 63, pp. 1201–04.

    CAS  Google Scholar 

  75. N.M. Shkatulyak and O.M. Tkachuk: Mater. Sci., 2012, vol. 48, pp. 153–61.

    CAS  Google Scholar 

  76. M. Masoumi, H.L.F. Coelho, S.S.M. Tavares, C.C. Silva, and H.F.G. de Abreu: JOM, 2017, vol. 69, pp. 1368–74.

    CAS  Google Scholar 

  77. E. Ohaeri, U. Eduok, and J. Szpunar: Eng. Fail. Analysis, 2019, vol. 96, pp. 496–507.

    CAS  Google Scholar 

  78. K.D. Ralston and N. Birbilis: Mater. Forum, 2008, vol. 34, pp. 54–63.

    Google Scholar 

  79. J.W. Schultze, B. Davepon, F. Karman, C. Rosenkranz, A. Schreiber, and O. Voigt (2004) Corros. Eng., Sci. Technol., vol. 39, pp. 45–52.

    CAS  Google Scholar 

  80. A. Schreiber, J.W. Schultze, M.M. Lohrengel, F. Kármán, and E. Kálmán: Electrochim. Acta, 2006, vol. 51, pp. 2625–30.

    CAS  Google Scholar 

  81. M. Seo and M. Chiba: Electrochim. Acta, 2001, vol. 47, pp. 319–25.

    CAS  Google Scholar 

  82. M. Chiba and M. Seo: J. Electrochem. Soc. 2003 https://doi.org/10.1149/1.1615994.

    Article  Google Scholar 

  83. J.W. Schultze and M.M. Lohrengel: Electrochim. Acta, 2000, vol. 45, pp. 2499–2513.

    CAS  Google Scholar 

  84. K. Fushimi and M. Seo: Electrochim. Acta, 2001, vol. 47, pp. 121–27.

    CAS  Google Scholar 

  85. A.J. Davenport, L.J. Oblonsky, M.P. Ryan, and M.F. Toney: J. Electrochem. Soc., 2000, vol. 147, pp. 2162–73.

    CAS  Google Scholar 

  86. W.R. Buck and H. Leidheiser: J. Electrochem. Soc., 1957, vol. 104, pp. 474–81.

    CAS  Google Scholar 

  87. G.P. Cammarota, L. Felloni, G. Palombarini, and S.S. Traverso: Corrosion, 1970, vol. 26, p. 129.

    CAS  Google Scholar 

  88. I.M. Gadala and A. Alfantazi: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3104–16.

    Google Scholar 

  89. Y. Lv, H. Luo, J. Tang, J. Guo, J. Pi, and K. Ye: Mater. Res. Bull., 2018, vol. 107, pp. 421–29.

    CAS  Google Scholar 

  90. L. Jinlong, L. Hongyun, L. Tongxiang, and G. Wenli: Mater. Res. Bull., 2015, vol. 70, pp. 896–907.

    CAS  Google Scholar 

  91. P. Okonkwo, R. Shakoor, A. Benamor, A. Amer Mohamed, and M. Al-Marri: Metals, 2017, vol. 7, p. 109.

    Google Scholar 

  92. J.L. Crolet, N. Thevenot, and S. Nesic: Corrosion, 1998, vol. 54, pp. 194–203.

    CAS  Google Scholar 

  93. J. Banaś, U. Lelek-Borkowska, B. Mazurkiewicz, and W. Solarski: Electrochim. Acta, 2007, vol. 52, pp. 5704–14.

    Google Scholar 

  94. Y. El Mendili, A. Abdelouas, and J.F. Bardeau: RSC Adv., 2013, vol. 3, pp. 15148–15156.

    Google Scholar 

  95. U. Eduok, E. Ohaeri, and J. Szpunar: Electrochim. Acta, 2018, vol. 278, pp. 302–12.

    CAS  Google Scholar 

  96. N. Nakayama and A. Obuchi: Corr. Sci., 2003, vol. 45, pp. 2075–92.

    CAS  Google Scholar 

  97. S.B. Jiang, L.H. Jiang, Z.Y. Wang, M. Jin, S. Bai, S. Song, and X. Yan: Constr. Build. Mater., 2017, vol. 150, pp. 238–47.

    CAS  Google Scholar 

  98. H. Huang, G. Shuai, X. Wei, and C. Yin: Microelectron. Reliab., 2017, vol. 74, pp. 15–21.

    CAS  Google Scholar 

  99. L. Qiu, K. Zou, and G. Xu: Appl. Surf. Sci., 2013, vol. 266, pp. 230–34.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC Strategic Grant No. 470033) for the financial support. The contributions of EVRAZ North America (Regina) in providing the steel and thermomechanical treatments performed at CanmetMATERIALS Natural Resources (Hamilton Canada) are also most appreciated. The SSSC provided the XPS facility used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enyinnaya Ohaeri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 6, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohaeri, E., Omale, J., Eduok, U. et al. Effect of Microstructure and Texture Evolution on the Electrochemical Corrosion Behavior of Warm-Rolled API 5L X70 Pipeline Steel. Metall Mater Trans A 51, 2255–2275 (2020). https://doi.org/10.1007/s11661-020-05659-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05659-7

Navigation