Skip to main content
Log in

Dislocation-Evolution Based Comprehensive Phenomenological Model for Continuum-Scale Description of Stress–Strain and Work-Hardening Behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Bridging continuum-scale description of uniaxial tensile plastic stress–strain behavior with adjacent mesoscale deformation models is important and, hence, requires identification of appropriate physical processes and the associated parameters. In this work, a comprehensive phenomenological model (CPM) for true stress–true strain behavior of a polycrystalline material in the plastic regime was developed based on the postulation of physical processes, viz. dislocation nucleation, multiplication, and annihilation, satisfying the statistical perception of dislocation evolution during deformation. Incorporation of these processes through intricate formulations using physical parameters, such as dislocation density, dynamic mean-free-path (MFP), fixed MFP etc. demonstrated a precise fit of a uniform tensile plastic flow curve and of its spin-off work-hardening (WH) behavior, simultaneously. Variation in the calculated parameters for different stress–strain responses of different alloy systems and the sensitivity analyses helped in appreciating the discrete modular nature of the model. Precise fits in both plastic stress–strain and WH responses using the same set of coefficients ensured the CPM to be reliable in simulating realistic uniaxial stress–strain plots from the physical parameters for various alloys. The model advances the understanding of phenomenological modeling especially in terms of incorporation of the dislocation nucleation mechanism in the evolution process, ensuing explicit expression for dislocation evolution with strain and grain size dependence. The present approach is deemed appropriate for linking the length scales in the multiscale description of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. INCONEL is a trade name designating a series of nickel alloys produced by the International Nickel Co.

  2. ZIRLO is a registered trademark of Westinghouse Electric Company LLC, its Affiliates and/or its Subsidiaries in the United States of America.

References

  1. P. Ludwik: Verlag Von Julius. Springer, Leipzig, 1909, p. 32.

    Google Scholar 

  2. J.A. Moriarty, V. Vitek, V.V. Bulatov, and S. Yip: J. Comput. Aided Mater. Des., 2002, vol. 9, pp. 99–132.

    Article  CAS  Google Scholar 

  3. V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, and S. Yip: Nature, 1998, vol. 391, pp. 669–72.

    Article  CAS  Google Scholar 

  4. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nat. Mater., 2002, vol. 1, pp. 45–48.

    Article  CAS  Google Scholar 

  5. S. Yip: Nat. Mater., 2003, vol. 2, pp. 3–5.

    Article  CAS  Google Scholar 

  6. P. Schall, I. Cohen, D.A. Weitz, and F. Spaepen: Science, 2004, vol. 305, pp. 1944–48.

    Article  CAS  Google Scholar 

  7. G.I. Taylor: Proc. R. Soc. Lond. Ser. A, 1934, 145, 362–87.

    Article  CAS  Google Scholar 

  8. U. Kocks, A. Argon, and M. Ashby: Thermodynamics and Kinetics of Slip, Pergamon Press, 1975.

  9. E. Orowan: Z. Phys., 1934, vol. 89, pp. 634–59.

    Article  Google Scholar 

  10. M. Polanyi: Z. Phys., 1934, vol. 89, pp. 660–64.

    Article  CAS  Google Scholar 

  11. Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.

    Article  Google Scholar 

  12. G. Malygin: Phys. Status Solidi A, 1990, vol. 119, pp. 423–36.

    Article  Google Scholar 

  13. T.C. Resende, S. Bouvier, F. Abed-Meraim, T. Balan, and S.-S. Sablin: Int. J. Plasticity, 2013, vol. 47, pp. 29–48.

    Article  Google Scholar 

  14. O. Bouaziz, D. Barbier, J. Embury, and G. Badinier: Philos. Mag., 2013, vol. 93, pp. 247–55.

    Article  CAS  Google Scholar 

  15. B. Choudhary and J. Christopher: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2642–55.

    Article  Google Scholar 

  16. I. Beyerlein and C. Tomé: Int. J. Plasticity, 2008, vol. 24, pp. 867–95.

    Article  CAS  Google Scholar 

  17. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3850–69.

    Article  Google Scholar 

  18. I. Watanabe, D. Setoyama, N. Iwata, and K. Nakanishi: Int. J. Plasticity, 2010, vol. 26, pp. 570–85.

    Article  CAS  Google Scholar 

  19. N. Bertin, L. Capolungo, and I. Beyerlein: Int. J. Plasticity, 2013, vol. 49, pp. 119–44.

    Article  CAS  Google Scholar 

  20. H. Zhang, X. Dong, D. Du, and Q. Wang: Mater. Sci. Eng. A, 2013, 564, 431–41.

    Article  CAS  Google Scholar 

  21. E. Rauch, J. Gracio, F. Barlat, and G. Vincze: Modell. Simul. Mater. Sci. Eng., 2011, vol. 19, p. 035009.

    Article  Google Scholar 

  22. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Acta Mater., 2010, vol. 58, pp. 1152–1211.

    Article  CAS  Google Scholar 

  23. A. Ma, F. Roters, and D. Raabe: Acta Mater., 2006, vol. 54, pp. 2169–79.

    Article  CAS  Google Scholar 

  24. D. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825–28.

    Article  CAS  Google Scholar 

  25. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  26. J.H. Hollomon: Trans. AIME, 1945, vol. 12, pp. 1–22.

    Google Scholar 

  27. W. Ramberg and W.R. Osgood: Technical Note No. 902, National Advisory Committee for Aeronautics, Washington, DC.

  28. T. Li, J. Zheng, and Z. Chen: SpringerPlus, 2016, vol. 5, pp. 1316–27.

    Article  CAS  Google Scholar 

  29. U. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  30. J. Mittra, J. Dubey, U. Kulkarni, and G. Dey: Mater. Sci. Eng. A, 2009, 512, 87–91.

    Article  Google Scholar 

  31. H.Q. Ang, T.B. Abbott, S. Zhu, and M.A. Easton: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1–15.

    Google Scholar 

  32. P. Schall, M. Feuerbacher, M. Bartsch, U. Messerschmidt, and K. Urban: Philos. Mag. Lett., 1999, vol. 79, pp. 785–96.

    Article  CAS  Google Scholar 

  33. F. Barlat, M. Glazov, J. Brem, and D. Lege: Int. J. Plasticity, 2002, vol. 18, pp. 919–39.

    Article  CAS  Google Scholar 

  34. U. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    Article  CAS  Google Scholar 

  35. Y. Estrin: in Unified Constitutive Laws of Plastic Deformation, A.S. Krausz and K. Krausz, eds., Academic Press, San Diego, California, USA, 1996, pp. 69–106.

  36. G.E. Deiter, Mechanical Metallurgy, SI Metric Edition ed., McGraw Hill, London, UK, 1988.

  37. U.F. Kocks and H. Mecking: in Dislocation Modelling of Physical Systems, M.F. Ashby, R. Bullough, C.S. Hartley, and J.P. Hirth, eds., Pergamon, 1981, pp. 173–92.

  38. C. Cáceres and P. Lukáč: Philos. Mag., 2008, vol. 88, pp. 977–89.

    Article  Google Scholar 

  39. P. Partridge: Metall. Rev., 1967, vol. 12, pp. 169–94.

    CAS  Google Scholar 

  40. C. Tomé and U. Kocks: Acta Metall., 1985, vol. 33, pp. 603–21.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. A. Sarkar and S. Khan, Mechanical Metallurgy Division, BARC, for providing raw tensile data and optical microstructures, respectively, for ZIRLO and Alloy 693 in the present study.

Data availability

The raw and processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mittra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 7, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittra, J., Kumbhar, N.T. Dislocation-Evolution Based Comprehensive Phenomenological Model for Continuum-Scale Description of Stress–Strain and Work-Hardening Behavior. Metall Mater Trans A 51, 1528–1542 (2020). https://doi.org/10.1007/s11661-019-05612-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05612-3

Navigation