Skip to main content

Advertisement

Log in

Phase and Microstructure Evolution of a Low-Alloyed Steel During Intercritical Annealing and Quenching

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Strong, yet ductile steels can be manufactured by applying optimized thermal treatments during production. Such treatments can be performed on low-alloyed steels and their mechanical properties can be tuned within relatively wide limits. Although dual-phase steels only contain low concentrations of alloying elements due to optimized thermal processing they can reach ultimate strengths of 1000 MPa or elongations to fracture of up to 30 pct. During their production ferrite (α) partially transforms into austenite (γ) and then during quenching further into martensite (α′). So far, many assumptions had to be made about these transformations since they were difficult to observe at elevated temperatures and during quenching. In this study, we combine heating and quenching inside an SEM with EBSD measurements to track the evolution of the microstructure at the surface of a small steel sample throughout a simulated production path. The orientation relationships of austenite and martensite formation are investigated by EBSD mapping of the parent and product phases. The microstructure is analyzed before and after quenching and the orientation relationships associated with the γ–α transformation as well as the γα′ transformation are compared. For the first time, the orientation relationships (OR) between ferrite, austenite, and martensite are directly compared within the same location of a sample. The results show that the Kurdjumov–Sachs (KS) and Nishiyama–Wassermann(NW) ORs only approximately describe the γ–α and γα′ transitions. The experiment reveals the role of KS/NW boundaries in the intercritical regime and microscopically observes the consequences of the γα′ transition. It was found that the formation of martensite causes highly deformed ferrite in its vicinity which most likely affects the mechanical properties of the dual-phase steel. It is expected that this type of experiment will help in better understanding microstructural mechanisms during heat treatments and eventually will contribute in the development of steels with tailored microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1 M.S. Rashid: Annu. Rev. Mater. Sci., 1981, vol. 11, pp. 245–66.

    CAS  Google Scholar 

  2. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A Phys. Metall. Mater. Sci. 1981, vol. 12, pp. 1419–28.

    Google Scholar 

  3. C. A. N. Lanzillotto and F.B. Pickering: Met. Sci., 1982, vol. 16, pp. 371–82.

    CAS  Google Scholar 

  4. 4 N.K. Balliger and T. Gladman: Met. Sci., 1981, vol. 15, pp. 95–108.

    CAS  Google Scholar 

  5. D. A. Korzekwa, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1984, vol. 15, pp. 1221–8.

    Google Scholar 

  6. 6 K. Hulka: Mater. Sci. Forum, 2003, vol. 414–415, pp. 101–10.

    Google Scholar 

  7. 7 R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–17.

    Google Scholar 

  8. 8 N.J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12, pp. 483–9.

    CAS  Google Scholar 

  9. J. Guo, G. SenZhu, Z.Q. Yao, J. Liu, Y. Du, and F. Li: Adv. Mater. Res., 2013, vol. 631–632, pp. 404–11.

    Google Scholar 

  10. 10 G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson: Mater. Sci. Eng. A, 2009, vol. 516, pp. 7–16.

    Google Scholar 

  11. A. Kamp, S. Celotto, and D.N. Hanlon: Mater. Sci. Eng. A, 2012, vol. 538, pp. 35–41.

    CAS  Google Scholar 

  12. 12 S. Patra, S.M. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.

    CAS  Google Scholar 

  13. M. SarwarPaec and P.R. Priestner: J. Mater. Sci., 1996, vol. 31, pp. 2091–95.

    Google Scholar 

  14. 14 P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.

    Google Scholar 

  15. 15 H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, and K.S. Kumar: Acta Mater., 2014, vol. 62, pp. 197–211.

    CAS  Google Scholar 

  16. 16 H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5026–32.

    Google Scholar 

  17. 17 L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, and D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386–98.

    CAS  Google Scholar 

  18. A. Nouri, H. Saghafian, and S. Kheirandish: J. Iron Steel Res. Int., 2010, vol. 17, pp. 44–50.

    CAS  Google Scholar 

  19. 19 R.G. Davies: Metall. Trans. A, 1978, vol. 9, pp. 671–79.

    Google Scholar 

  20. 20 N. Peranio, F. Roters, and D. Raabe: Mater. Sci. Forum, 2012, vol. 715–716, pp. 13–22.

    Google Scholar 

  21. 21 C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.

    CAS  Google Scholar 

  22. R. Priestner and M. Ajmal: Mater. Sci. Technol., 1987, vol. 3, p. 3.

    Google Scholar 

  23. 23 G.S. Huppi, D.K. Matlock, and G. Krauss: Scr. Metall., 1980, vol. 14, pp. 1239–43.

    CAS  Google Scholar 

  24. 24 J. Zhang, L. Morsdorf, and C.C. Tasan: Mater. Charact., 2016, vol. 111, pp. 137–46.

    CAS  Google Scholar 

  25. 25 E.C. Bain: Trans. Am. Inst. Min. Metall. Eng., 1924, vol. 70, pp. 25–46.

    Google Scholar 

  26. 26 V.G. Kurdjumow and G. Sachs: Zeitschrift für Phys., 1930, vol. 64, pp. 325–43.

    Google Scholar 

  27. Z. Nishiyama: Martensitic Transformation, Academic Press,New York, 1978.

    Google Scholar 

  28. 28 G. Wassermann: Mitt K-Wilh-Inst Eisenforsch, 1935, vol. 17, pp. 149–55.

    CAS  Google Scholar 

  29. G. Brückner, J. Pospiech, I. Seidl, G. Gottstein: Scr. Mater., 2001, vol. 44, pp. 2635–40.

    Google Scholar 

  30. 30 G. Brückner and G. Gottstein: ISIJ Int., 2001, vol. 41, pp. 468–77.

    Google Scholar 

  31. 31 I. Lischewski and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 1530–41.

    CAS  Google Scholar 

  32. 32 T. Fukino and S. Tsurekawa: Mater. Trans., 2008, vol. 49, pp. 2770–5.

    CAS  Google Scholar 

  33. 33 G. Nolze: ZEITSCHRIFT FUR Met., 2004, vol. 95, pp. 744–55.

    CAS  Google Scholar 

  34. 34 S. Nambu, N. Shibuta, M. Ojima, J. Inoue, T. Koseki, and H.K.D.H. Bhadeshia: Acta Mater., 2013, vol. 61, pp. 4831–9.

    CAS  Google Scholar 

  35. 35 M. Sarwar, E. Ahmad, K.A. Qureshi, and T. Manzoor: Mater. Des., 2007, vol. 28, pp. 335–40.

    CAS  Google Scholar 

  36. 36 M.J. Santofimia, C. Kwakernaak, W.G. Sloof, L. Zhao, and J. Sietsma: Mater. Charact., 2010, vol. 61, pp. 937–42.

    CAS  Google Scholar 

  37. 37 C. Cabus, H. Regle, and B. Bacroix: J. Phys. IV Fr., 2004, vol. 120, pp. 137–44.

    CAS  Google Scholar 

  38. 38 J. Savoie, R.K. Ray, M.P. Butrón-Guillén, and J.J. Jonas: Acta Metall. Mater., 1994, vol. 42, pp. 2511–23.

    CAS  Google Scholar 

  39. 39 B. Hutchinson, L. Ryde, E. Lindh, and K. Tagashira: Mater. Sci. Eng. A, 1998, vol. 257, pp. 9–17.

    Google Scholar 

  40. I. Lischewski, D.M. Kirch, A. Ziemons, and G. Gottstein: Texture Stress. Microstruct., 2008, 10.1155/2008/294508.

    Article  Google Scholar 

  41. G. Nolze and R. Hielscher: J. Appl. Crystallogr., 2016, 10.1107/S1600576716012942.

    Article  Google Scholar 

  42. 42 A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2002, vol. 50, pp. 3545–55.

    CAS  Google Scholar 

  43. 43 T. Nagano and M. Enomoto: Metall. Mater. Trans. A, 2006, vol. 37, pp. 929–37.

    CAS  Google Scholar 

  44. 44 S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    CAS  Google Scholar 

  45. 45 S. Sun, B. L. Adams, W. E. King: Philos. Mag. A, 2000, vol. 80, pp. 9–25.

    CAS  Google Scholar 

  46. 46 W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–7.

    CAS  Google Scholar 

  47. 47 K.E. Easterling and A.R. Thölen: Acta Metall., 1976, vol. 24, pp. 333–41.

    Google Scholar 

  48. 48 G.B. Olson and M. Cohen: Annu. Rev. Mater. Sci., 1981, vol. 2, pp. 1–19.

    Google Scholar 

  49. 49 G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1905–14.

    Google Scholar 

  50. 50 G. Nolze: Cryst. Res. Technol., 2006, vol. 41, pp. 72–7.

    CAS  Google Scholar 

  51. 51 C. Cayron: Acta Mater., 2015, vol. 96, pp. 189–202.

    CAS  Google Scholar 

  52. 52 H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    CAS  Google Scholar 

  53. 53 G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393–403.

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been conducted within the framework of the Research Training Group 1483 of the Deutsche Forschungsgemeinschaft “Process chains in manufacturing: Interaction, modelling and evaluation of process zones” and M.H.W. and M.P. were funded by this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Mönig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 29, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfund, M., Wenk, M. & Mönig, R. Phase and Microstructure Evolution of a Low-Alloyed Steel During Intercritical Annealing and Quenching. Metall Mater Trans A 51, 1493–1505 (2020). https://doi.org/10.1007/s11661-019-05603-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05603-4

Navigation