Skip to main content
Log in

Sub-zero Temperature Dependence of Tensile Response of Friction Stir Welded Al-Cu-Li (AA2198) Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mechanical properties at ambient and cryogenic temperatures of Al-Cu-Li alloy are required for design and fabrication of liquid hydrogen and liquid oxygen tanks of satellite launch vehicles. In the present work, bead-on-sheet, friction stir welding was carried out with three different rotation speeds. The yield and strain hardening behaviors of the welds were evaluated in temperature range of 20 K to 298 K. Both yield stress and strain hardening ability in the specimen increased with decrease in testing temperature. The dependence of yield stress on temperature was modeled on the basis of thermally activated dislocation mobility, while that of strain hardening was modeled on the temperature dependence of dynamic recovery rate parameter. The recovery parameter followed an Arrhenius-type relationship with temperature. The model parameters determined from the experimental data were further used to simulate the stress–strain curves at different sub-zero temperatures for the friction stir welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.E. Prasad, A.A. Gokhale, and R.J.H. Wanhill: Aerospace Materials and Material Technologies, Springer, New York, 2017, pp. 53–72.

  2. Vicente Araullo-Peters, Baptiste Gault, Frederic De Geuser, Alexis Deschamps and Julie M Cairney, Acta Materialia 2014, vol. 66, pp. 199-208.

    Article  CAS  Google Scholar 

  3. RP Martukanitz, CA Natalie and JO Knoefel, JOM 1987, vol. 39, pp. 38-42.

    Article  CAS  Google Scholar 

  4. SC Chen and JC Huang, Materials Transactions, JIM 1999, vol. 40, pp. 1069-1078.

    Article  CAS  Google Scholar 

  5. Rajiv S Mishra and ZY Ma, Materials science and engineering: R: reports 2005, vol. 50, pp. 1-78.

    Article  Google Scholar 

  6. Y.E. Ma, Z.Q. Zhao, B.Q. Liu and W.Y. Li, Mater. Sci. Eng. A 2013, vol. 569, pp. 41-47.

    Article  CAS  Google Scholar 

  7. TL Jolu, TF Morgeneyer, A Denquin, M Sennour, A Laurent, J Besson and AF Gourgues-Lorenzon, Metall. Mater. Trans. A 2014, vol. 45, pp. 5531-5544.

    Article  Google Scholar 

  8. Y Lin and Z Zheng, Mater. Charact. 2017, 123, pp. 307-314.

    Article  CAS  Google Scholar 

  9. B Cai, ZQ Zheng, DQ He, SC Li, HP Li, J Alloys Compd. 2015, vol. 649, pp. 19-27.

    Article  CAS  Google Scholar 

  10. Frédéric De Geuser, Benoit Malard and Alexis Deschamps, Philosophical Magazine 2014, vol. 94, pp. 1451-1462.

    Article  Google Scholar 

  11. A Steuwer, M Dumont, J Altenkirch, S Birosca, A Deschamps, PB Prangnell and PJ Withers, Acta Mater. 2011, vol. 59, pp. 3002-3011.

    Article  CAS  Google Scholar 

  12. FF Wang, WY Li, J Shen, SY Hu and JF dos Santos, Materials & Design 2015, vol. 86, pp. 933-940.

    Article  CAS  Google Scholar 

  13. Wenya Li, Ruorong Jiang, Zhihan Zhang and Yu’E Ma, Advanced Engineering Materials 2013, vol. 15, pp. 1051-1058.

    Article  CAS  Google Scholar 

  14. J Entringer, M Reimann, A Norman and JF dos Santos, J Mater Res Technol 2019, vol. 8, pp. 2031-2040.

    Article  CAS  Google Scholar 

  15. J Zhang, XS Feng, JS Gao, H Huang, ZQ Ma and LJ Guo, Journal of Materials Science & Technology 2018, vol. 34, pp. 219-227.

    Article  CAS  Google Scholar 

  16. YE Ma, ZC Xia, RR Jiang and WY Li, Eng Fract Mech 2013, vol. 114, pp. 1-11.

    Article  Google Scholar 

  17. Dixit, S., Madhu, H.C., Kailas, S.V. and Chattopadhyay, K., 2017. Role of insert material on process loads during FSW. The International Journal of Advanced Manufacturing Technology91(9-12), pp.3427-3435.

    Article  Google Scholar 

  18. Tang, W., Guo, X., McClure, J.C., Murr, L.E. and Nunes, A., 1998. Heat Input and Temperature Distribution in Friction Stir Welding. Journal of Materials Processing and Manufacturing Science7, pp.163-172.

    Article  CAS  Google Scholar 

  19. N Nayan, S Mahesh, MJNV Prasad, SVSN Murthy and I Samajdar, Int J Plast 2019, 118, pp. 215-232.

    Article  CAS  Google Scholar 

  20. JL Tallon and A Wolfenden, Journal of Physics and Chemistry of Solids 1979, vol. 40, pp. 831-837.

    Article  CAS  Google Scholar 

  21. Peng, G., Yan, Q., Hu, J., Chen, P., Chen, Z. and Zhang, T., 2019. Effect of Forced Air Cooling on the Microstructures, Tensile Strength, and Hardness Distribution of Dissimilar Friction Stir Welded AA5A06-AA6061 Joints. Metals9(3), p.304.

    Article  CAS  Google Scholar 

  22. L.F. Vosteen, NASA, TIN 4348, 1958, pp. 1–17.

  23. HM Ledbetter, Cryogenics 1982, vol. 22, pp. 653-656.

    Article  CAS  Google Scholar 

  24. UF Kocks, AS Argon, MF Ashby, Progress in materials science 1975, vol. 19, pp. 1-281.

    Article  Google Scholar 

  25. Kanji Ono, Journal of applied physics 1968, vol. 39, pp. 1803-1806.

    Article  Google Scholar 

  26. UF Kocks and H Mecking, Progress in materials science 2003, vol. 48, pp. 171-273.

    Article  CAS  Google Scholar 

  27. A Simar, Y Bréchet, B De Meester, A Denquin, T Pardoen, Acta Mater 2007, vol. 55, pp. 6133-6143.

    Article  CAS  Google Scholar 

  28. G Fribourg, Y Bréchet, A Deschamps, and A Simar, Acta Mater. 2011, vol. 59, pp. 3621-3635.

    Article  CAS  Google Scholar 

  29. M Huang, PEJ Rivera-Díaz-del-Castillo, O Bouaziz and S Van Der Zwaag, Materials science and technology 2008, vol. 24, pp. 495-500.

    Article  CAS  Google Scholar 

  30. Yu A Pokhyl, Low Temperature Physics 2004, vol. 30, pp. 332-339.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

MY and NPG would like to thank space technology cell (STC), IIT Kanpur, for providing funding for the present work. NN would like to thank Director, ISRO, for giving permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 11, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayan, N., Yadava, M., Gurao, N.P. et al. Sub-zero Temperature Dependence of Tensile Response of Friction Stir Welded Al-Cu-Li (AA2198) Alloy. Metall Mater Trans A 51, 1173–1182 (2020). https://doi.org/10.1007/s11661-019-05598-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05598-y

Navigation