Skip to main content
Log in

In Situ Observation and Phase-Field Modeling of Peritectic Solidification of Low-Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, both in situ experiment and multiphase field modeling are adopted to investigate the peritectic solidification of a low-carbon steel. The results show that the peritectic reaction occurs at the temperature of 3.4 K lower than the equilibrium peritectic temperature, the γ-austenite first nucleates at the δ/L boundary, and then rapidly propagates along the δ/L boundary by the advance of the L/γ/δ triple point till the δ-ferrite is encircled by the γ austenite. The whole peritectic reaction process is very fast, and the measured and predicted average propagation velocity of L/γ/δ triple point along the δ/L boundary are, respectively, 1.36 and 1.09 mm/s. This small difference between the measurement and prediction means that the developed multiphase field model is capable of predicting the peritectic reaction and peritectic transformation during the peritectic solidification process of Fe-C alloy, and the peritectic reaction can be regarded as a solute diffusion-controlled process. With the increase of cooling rate and undercooling, the advancing velocities of L/γ/δ triple point, L/γ interface and γ/δ interface increase, and thus the γ-austenite between the liquid phase and δ phase becomes longer and thicker for the same elapsed time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xia G, Bernhard C, IIie S, Fuerst C (2011) Steel Res Int 82:230-236

    Article  CAS  Google Scholar 

  2. 2. K. Matsuura, Y. Itoh and T.Narita: ISIJ Int., 1993, vol. 33, pp. 583-587.

    Article  CAS  Google Scholar 

  3. 3. P. Presoly, R. Pierer and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5377-5388.

    Article  Google Scholar 

  4. 4. R. Sarkar, A. Sengupta, V. Kumar and S. K. Choudary: ISIJ Int., 2015, vol. 55, pp. 781-790.

    Article  CAS  Google Scholar 

  5. 5. H. W. Kerr, J. Cisse and G. F. Bolling: Acta Mater., 1974, vol. 22, pp. 677-686.

    Article  CAS  Google Scholar 

  6. 6. H. Fredriksson and J. Stjerndahl: Metal Sci., 1982, vol. 16, pp. 575-585.

    Article  CAS  Google Scholar 

  7. 7. H. W. Kerr and W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129-164.

    Article  CAS  Google Scholar 

  8. 8. D. M. Stefanescu: ISIJ Int., 2006, vol. 46, pp. 786-794.

    Article  CAS  Google Scholar 

  9. 9. N. M. Xiao, Y. Chen, D. Z. Li and Y. Y. Li: Sci. China Technol. Sci., 2012, vol. 55, pp. 341-356.

    Article  CAS  Google Scholar 

  10. 10. H. Fredriksson and T. Nylén: Metal Sci., 1982, vol. 16, pp. 283-294.

    Article  CAS  Google Scholar 

  11. 11. H. Shibata, Y. Arai, M. Suzuki and T. Emi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 981-991.

    Article  CAS  Google Scholar 

  12. 12. H. Nassar and H. Fredriksson: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2776-2783.

    Article  CAS  Google Scholar 

  13. 13. D. Phelan, M. Reid and R.Dippenaar: Mater. Sci. Eng. A, 2008, vol. 477A, pp. 226-232.

    Article  Google Scholar 

  14. 14. M. Reid, D. Phelan and R. Dippenaar: ISIJ Int., 2004, vol. 44, pp. 565-572.

    Article  CAS  Google Scholar 

  15. 15. S. Griesser, C. Bernhard, R. Dippenaar: Acta Mater., 2014, vol. 81, pp. 111-120.

    Article  CAS  Google Scholar 

  16. 16. S. Griesser, C. Bernhard and R. Dippenaar: ISIJ Int., 2014, vol. 54, pp. 466-473.

    Article  CAS  Google Scholar 

  17. Steinbach I, Pezzolla F, Nestler B, Seeβelberg M, Prieler R, Schmitz GJ, Rezende JLL (1996) Physica D 94:135-147.

    Article  Google Scholar 

  18. 18. J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach: Physica D, 1998, vol. 115, pp. 73-86.

    Article  CAS  Google Scholar 

  19. 19. J. Tiaden: J. Cryst. Growth, 1999, vol. 198-199, pp. 1275-1280.

    Article  Google Scholar 

  20. 20. B. Nestler and A. Wheeler: Physica D, 2000, vol. 138, pp. 114-133.

    Article  CAS  Google Scholar 

  21. 21. A. Choudhury, B. Nestler, A. Telang, M. Selzer and F. Wendler: Acta Mater., 2010, vol. 58, pp. 3815-3823.

    Article  CAS  Google Scholar 

  22. 22. J. S. Lee, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 1999, vol. 39, pp. 730-736.

    Article  CAS  Google Scholar 

  23. Kim SG, Kim WT, Suzuki T (1998) Phys Rev E 58:7186-7197

    Article  Google Scholar 

  24. 24. M. Ode, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 2005, vol. 45, pp. 147-149.

    Article  CAS  Google Scholar 

  25. 25. D. Phelan, M. Reid and R. Dippenaar: Comp. Mater. Sci., 2005, vol. 34, pp. 282-289.

    Article  CAS  Google Scholar 

  26. 26. D. Phelan, M. Reid and R. Dippenaar: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 985-994.

    Article  CAS  Google Scholar 

  27. 27. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 5749-5758.

    Article  CAS  Google Scholar 

  28. 28. M. Ohno and K. Matsuura: ISIJ Int., 2010, vol. 50, pp. 1879-1885.

    Article  CAS  Google Scholar 

  29. 29. L. Zhang, M. Stratmann, Y. Du, B. Sundman and I. Steinbach: Acta Mater., 2015, vol. 88, pp. 156-169.

    Article  CAS  Google Scholar 

  30. 30. S. Y. Pan, M. F. Zhu and M. Rettenmayr: Acta Mater., 2017, vol. 132, pp. 565-575.

    Article  CAS  Google Scholar 

  31. 31. S. Y. Pan and M. F. Zhu: Acta Mater., 2018, vol. 146, pp. 63-75.

    Article  CAS  Google Scholar 

  32. 32. S. G. Kim, W. T. Kim, T. Suzuki and M. Ode: J. Crystal Growth, 2004, vol. 261, pp. 135-158.

    Article  CAS  Google Scholar 

  33. 33. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 6134-6141.

    Article  CAS  Google Scholar 

  34. 34. M. Hillert: Solidification and Casting of Metals, 1st ed., The Metals Society, London, 1979, pp. 81.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of National Key Research and Development Plan (Nos. 2017YFB0304100, 2016YFB0300105), National Natural Science of China (Nos. 51674072, 51704151, 51804067) and Fundamental Research Funds for the Central Universities (Nos. N182504014, N170708020, N172503013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Liu, G., Wang, P. et al. In Situ Observation and Phase-Field Modeling of Peritectic Solidification of Low-Carbon Steel. Metall Mater Trans A 51, 767–777 (2020). https://doi.org/10.1007/s11661-019-05551-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05551-z

Navigation