Skip to main content
Log in

Quantified Relation between Grain Boundary Angle and Interfacial Stability of PWA1484 Superalloy during Thermal Exposure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nowadays, the tolerance of grain boundaries (GBs) is a crucial subject of single crystal (SX) superalloys. Quantitatively deciphering the effect of GBs on the interfacial stability may provide theoretical guidance for the technological design and engineering application of SX superalloys. In this article, [001] tilt artificial GBs with grain boundary angles (GBAs) of 5, 15, 25, 35, and 45 deg, respectively, have been prepared by directional solidification for PAW1484 SX superalloy. The microstructural evolution at GBs under thermal exposure at 1070 °C up to 1000 hours was quantitatively investigated. It has been revealed that low-angle grain boundaries (LAGBs) (< 15 deg) maintained a straight and narrow interface and have no precipitates (mainly carbides) around GBs. For GBAs higher than 25 deg, however, the γ′ layer was widened and coherent MC carbides with orientation relationships [001]MC//[001]matrix and 〈001〉MC//〈001〉matrix, together with blocky and closely spaced M6C carbides, were precipitated. By carefully scaling, the width of the γ′ layer and the ratio of carbides to the γ′ layer were quantitatively determined as a function of GBAs and thermal exposure time. Furthermore, it has been confirmed that the topological-closed-packed (TCP) phase precipitated along the 45 deg GB with the increase of thermal exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Le Graverend J-B, Cormier J, and Gallerneau F (2014) Int J Plasticity 59:55–83.

    Google Scholar 

  2. Roger C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2008.

    Google Scholar 

  3. J.D. Nystrom, T.M. Pollock, W.H. Murphy, and A. Garg: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2443–52.

    CAS  Google Scholar 

  4. G. Lvov, V. Levit, and M. Kaufman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1669–79.

    CAS  Google Scholar 

  5. Q. Chen, N. Jones, and D. Knowles: Acta Mater., 2002, vol. 50, pp. 1095–1112.

    CAS  Google Scholar 

  6. W. Sha: Scripta Mater., 2000, vol. 42, pp. 549–53.

    CAS  Google Scholar 

  7. M.D. Sangid, H. Sehitoglu, and T. Niendorf: Mater. Sci. Eng.: A, 2010, vol. 527, pp. 7115–25.

    Google Scholar 

  8. Petr Lukáš, Josef Čadek, and Ludvik Kunz: Kovove Mater., 2005, vol. 43, pp. 5–19.

    Google Scholar 

  9. B. Kear and B. Piearcey: AIME Trans., 1967, vol. 239, pp. 1209–15.

    CAS  Google Scholar 

  10. J.C. Stinville, K. Gallup, and T.M. Pollock: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2516–29.

    Google Scholar 

  11. Q. Chen, C. Jones, and D. Knowles: Mater. Sci. Eng.: A, 2004, vol. 385, pp. 402–18.

    Google Scholar 

  12. Y. Patel, P.F. Browning, and M.D. Fitzpatrick: ASME Turbo Expo, 2000, p. V004T01A005.

  13. J. Li, J. Zhao, S. Liu, and M. Han: Superalloys, 2008, pp. 443–51.

    Google Scholar 

  14. S. Tin, T.M. Pollock, and W. Murphy: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1743–53.

    CAS  Google Scholar 

  15. Q. Li, J. Shen, and L. Qin: J. Alloys Compd., 2016, vol. 691, pp. 997–1004.

    Google Scholar 

  16. M.M. Ter Vehn: Superalloys, 1966, p. 471.

    Google Scholar 

  17. X. Yang, H. Dong, and W. Wang: Mater. Sci. Eng. A, 2004, vol. 386, pp. 129–39.

    Google Scholar 

  18. J.W. Aveson, P.A. Tennant, and B.J. Foss: Acta Mater., 2013, vol. 61, pp. 5162–71.

    CAS  Google Scholar 

  19. M. Newell, N. D’Souza, and N.R. Green: Mater. Sci. Eng. A, 2005, vol. 413, p. 567.

    Google Scholar 

  20. W. Bogdanowicz, R. Albrecht, and J. Sieniawski: J. Cryst. Growth, 2014, vol. 401, pp. 418–22.

    CAS  Google Scholar 

  21. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.

    CAS  Google Scholar 

  22. E.W. Ross and K.S. O’Hara: Superalloys, 1996, pp. 19–25.

    Google Scholar 

  23. K. Harris and J.B. Wahl: Superalloys, 2004, pp. 45–52.

    Google Scholar 

  24. D.M. Shah and A. Cetel: Superalloys, 2000, pp. 295–304.

    Google Scholar 

  25. L. He, Q. Zheng, and A. Tieu: Mater. Sci. Eng.: A, 2005, vol. 397, pp. 297–304.

    Google Scholar 

  26. A. Koul and R. Castillo: Metall. Trans. A, 1988, vol. 19A, pp. 2049–66.

    Google Scholar 

  27. Z. Yu, Y. Zheng, and Q. Feng: Scripta Mater., 2017, vol. 128, pp. 23–26.

    CAS  Google Scholar 

  28. M. Huang, L. Zhuo, and J. Li: Mater. Sci. Eng.: A, 2015, vol. 640, pp. 394–401.

    CAS  Google Scholar 

  29. W. Sun, X. Qin, and L. Zhou: Mater. Design, 2015, vol. 69, pp. 81–88.

    CAS  Google Scholar 

  30. X.Z. Qin, J.T. Guo, and H.Q. Ye: Mater. Sci. Eng.: A, 2008, vol. 485, pp. 74–79.

    Google Scholar 

  31. W. Zhixun, P. Haiqing, and Y. Zhufeng: Rare Met. Mater. Eng., 2015, vol. 44, pp. 1873–78.

    Google Scholar 

  32. S. Gao, Y. Zhou, and T. Jin: J. Alloys Compd., 2014, vol. 610, pp. 589–93.

    CAS  Google Scholar 

  33. Dubiel B, Kalemba R, Kąc S (2017) Mater Charact 131:266–76.

    CAS  Google Scholar 

  34. B. Dubiel, P. Indyka, and A. Radziszewska: J. Alloys Compd., 2018, vol. 731, pp. 693–703.

    CAS  Google Scholar 

  35. I. Manna, S. Pabi, and W. Gust: Int. Mater. Rev., 2001, vol. 46, pp. 53–591.

    CAS  Google Scholar 

  36. V.V. Bulatov, B.W. Reed, and M. Kumar: Acta Mater., 2014, vol. 65, pp. 161–75.

    CAS  Google Scholar 

  37. D.L. Olmsted, E.A. Holm, and S.M. Foiles: Acta Mater., 2009, vol. 57, pp. 3704–13.

    CAS  Google Scholar 

  38. M.D. Sangid, T. Ezaz, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 283–96.

    CAS  Google Scholar 

  39. R.J. Mitchell, H.Y. Li, and Z.W. Huang: J. Mater. Process. Technol., 2009, vol. 209, pp. 1011–17.

    CAS  Google Scholar 

  40. P. Kontis, E. Alabort, and D. Barba: Acta Mater., 2017, vol. 124, pp. 489–500.

    CAS  Google Scholar 

  41. H.L. Danflou, M. Macia, and T. Khan: Superalloys, 1996, pp. 119–27.

    Google Scholar 

  42. L. Jiang, R. Hu, and H. Fu: Mater. Sci. Eng.: A, 2012, vol. 536, pp. 37–44.

    CAS  Google Scholar 

  43. Kaur I, Gust W (1989) Who is god. In: Kaur J, Gust J (eds) Fundamentals of Grain and Interphase Boundary Diffusion. Ziegler Press, Stuttgart

    Google Scholar 

  44. Y.S. Lim, D.J. Kim, and S.W. Kim: Mater. Charact., 2014, vol. 96, pp. 28–39.

    CAS  Google Scholar 

  45. H.U. Hong, H.W. Jeong, and I.S. Kim: Phil. Mag., 2012, vol. 92, pp. 2809–25.

    CAS  Google Scholar 

  46. C.T. Sims: Superalloys II, Wiley & Sons, New York, NY, 1987, p. 1.

    Google Scholar 

  47. Y. Jinxia, Z. Qi, and H. Zhuangqi: J. Mater. Sci., 2006, vol. 41, pp. 6476–78.

    Google Scholar 

  48. X. Dong, X. Zhang, and K. Du: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1031–38.

    CAS  Google Scholar 

  49. G. Bai, J. Li, and R. Hu: Mater. Sci. Eng.: A, 2011, vol. 528, pp. 2339–44.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701402), Aeronautical Science Foundation of China (Grant No. 2015ZE21006), National Natural Science Foundation of China (Grant No. 51771020) and the Foundation of Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, China (Grant No. 6142903190101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxia Song or Xidong Hui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Song, J., Wang, D. et al. Quantified Relation between Grain Boundary Angle and Interfacial Stability of PWA1484 Superalloy during Thermal Exposure. Metall Mater Trans A 51, 380–389 (2020). https://doi.org/10.1007/s11661-019-05510-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05510-8

Navigation