Skip to main content
Log in

Effect of Ferrite/Martensite Phase Size on Tensile Behavior of Dual-Phase Steels with Nano-Precipitation of Vanadium Carbides

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study investigates the effect of ferrite/martensite phase size and dispersion of nano-precipitates in ferrite on strength, ductility, and fracture behavior of dual-phase (DP) steels. Dispersion of nano-precipitates in ferrite improves the strength with keeping sufficient uniform elongation and post-uniform elongation, while decrease in ferrite/martensite phase size has a little effect on the increase in strength in the phase size range investigated. However, the refinement of phase size significantly improves the post-uniform elongation and reduction in area. It is concluded therefore that a simultaneous combination of refinement of ferrite/martensite phase size and dispersion of nano-precipitation in ferrite is effective to significantly improve the strength and strength–post-uniform elongation in DP steels. Quantitative analysis of void formation reveals that fracture by martensite cracking is a primary fracture mechanism in coarse phase-sized DP samples, while ferrite/martensite interface decohesion becomes a dominant fracture mechanism in fine phase-sized DP samples. It is suggested that the refinement of phase size is a promising strategy to change the fracture behavior from brittle to ductile manner, leading to an enhancement of local deformability after the necking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Ref. [26]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted from Ref. [26]

Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Takahashi: Nippon Steel Tech. Report, 2003, vol. 88, pp. 2-7.

    Google Scholar 

  2. H. Takechi: JOM, 2008, vol. 60, pp. 22-26.

    Article  Google Scholar 

  3. M. Y. Demeri: Advanced High-Strength Steels: Science, Technology, and Application, 1st ed., ASM International, Ohio OH, 2013.

    Google Scholar 

  4. ArcelorMittal, http://automotive.arcelormittal.com. Accessed 07 Jan 2019.

  5. Nippon Steels & Sumitomo Metal Corporation, http://www.nssmc.com. Accessed 07 Jan 2019.

  6. P.-H. Chang and A. G. Preban: Acta Mater, 1985, vol. 33, pp. 897-903.

    Article  Google Scholar 

  7. A. Bag, K. K. Ray and E. S. Dwarakadasa: Metall. Mater. Trans. A, 2014, vol. 30A, pp. 1193-202.

    Google Scholar 

  8. T. Matsuno, D. Maeda, H. Shutoh, A. Uenishi and M. Suehiro: ISIJ Int, 2014, vol. 54, pp. 938-44.

    Article  Google Scholar 

  9. Z. Jiang, Z. Guan and J. Lian: Mater. Sci. Eng. A, 2014, vol. 190, pp. 55-64.

    Article  Google Scholar 

  10. K. Hasegawa, Y. Toji, H. Minami, H. Ikeda, T. Morikawa and K. Higashida: Tetsu-to-Hagané, 2012, vol. 98, pp. 320-27.

    Article  Google Scholar 

  11. D. K. Mondal and R. M. Dey: Mater. Sci. Eng. A, 1992, vol. 149, pp. 173-81.

    Article  Google Scholar 

  12. M. Calcagnotto, D. Ponge and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832-40.

    Article  Google Scholar 

  13. M. Mazinani and W. J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328-39.

    Article  Google Scholar 

  14. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama and S. Takaki: Mater. Sci. Eng. A, 2014, vol. 604, pp. 135-41.

    Article  Google Scholar 

  15. F. H. Samuel: Mater. Sci. Eng, 1985, vol. 75, pp. 51-66.

    Article  Google Scholar 

  16. H.-C. Chen and G.-H. Cheng: J. Mater. Sci, 1989, vol. 24, pp. 1991-94.

    Article  Google Scholar 

  17. S. S. M. Tavares, P. D. Pedroza, J. R. Teodósio and T. Gurova: Scripta Mater, 1999, vol. 40, pp. 887-92.

    Article  Google Scholar 

  18. K. Hasegawa, K. Kawamura, T. Urabe and Y. Hosoya: ISIJ Int, 2014, vol. 44, pp. 603-09.

    Article  Google Scholar 

  19. H. Minami, K. Nakayama, T. Morikawa, K. Higashida, Y. Toji and K. Hasegawa: Tetsu-to-Hagané, 2011, vol. 97, pp. 493-500.

    Article  Google Scholar 

  20. A. A. Sayed and S. Kheirandish: Mater. Sci. Eng. A, 2014, vol. 532, pp. 21-25.

    Article  Google Scholar 

  21. A. Kamp, S. Celotto and D. N. Hanlon: Mater. Sci. Eng. A, 2012, vol. 538, pp. 35-41.

    Article  Google Scholar 

  22. M. Azuma, S. Goutianos, N. Hansen, G. Winther and X. Huang: Mater. Sci. Tech, 2012, vol. 28, pp. 1092-100.

    Article  Google Scholar 

  23. N. Nakada, M. Nishiyama, N. Koga, T. Tsuchiyama and S. Takaki: Tetsu-to-Hagané, 2014, vol. 100, pp. 1238-45.

    Article  Google Scholar 

  24. I. Machida, M. Narita, R. Kureura, M. Morita, N. Aoyagi and M. Sano: SAE Paper No. 940536, 1994.

  25. M. Morita, T. Shimizu, O. Furukimi, N. Aoyagi and T. Kato: Materia Japan, 1998, vol. 37, pp. 513-15.

    Article  Google Scholar 

  26. N. Kamikawa, M. Hirohashi, Y. Sato, Elango C, G. Miyamoto and T. Furuhara: ISIJ Int, 2015, vol. 55, pp. 1781-90.

    Article  Google Scholar 

  27. C. Elango, N. Kamikawa, G. Miyamoto and T. Furuhara: in Proc. of Asia Steel, Yokohama, 2015, pp. 516–18.

  28. G. Miyamoto, R. Hori, B. Poorganji and T. Furuhara: ISIJ Int, 2011, vol. 51, pp. 1733-39.

    Article  Google Scholar 

  29. N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa and T. Furuhara: ISIJ Int, 2014, vol. 54, pp. 212-21.

    Article  Google Scholar 

  30. A. J. Abdalla, L. R. O. Hein, M. S. Pereira, T. M. Hashimoto: Mater. Sci. Tech, 1999, vol. 15, pp. 1167-170.

    Article  Google Scholar 

  31. S. Gündüz: Mater. Letters, 2009, vol. 63, pp. 2381-383.

    Article  Google Scholar 

  32. G. Krauss: Mater. Sci. Eng. A, 1999, vol. 275, pp. 40-57.

    Article  Google Scholar 

  33. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin: Mater. Sci. Eng. A, 2009, vol. 499, pp. 1-6.

    Article  Google Scholar 

  34. J.M. Rigsbee and P.J. VanderArend, Formable HSLA and Dual-Phase Steels (edited by A.T. Davenport), Proc. of the Metallurgical Society of AIME, New York, 1979, pp. 58–88.

  35. A. Karmakar, S. Sivaprasad, S. Kundu, D. Chakrabarti: Metall. Trans. A, 2014, vol. 45A, pp. 1659-64.

    Article  Google Scholar 

  36. X. J. He, N. Terao and A. Berghezan: Metal Sci, 1984, vol. 18, pp. 367-73.

    Article  Google Scholar 

  37. Y. L. Su and J. Gurland: Mater. Sci. Eng, 1987, vol. 95, pp. 151-65.

    Article  Google Scholar 

  38. S. Ankem, H. Margolin, C.A. Greene, B.W. Neuberger, P.G. Oberson: Prog Mater Sci, 2006, vol. 51, pp. 632-709.

    Article  Google Scholar 

  39. N. J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12, pp. 483-89.

    Article  Google Scholar 

  40. D.J. Lloyd: Metal Sci, 1980, vol. 14, pp. 193-98.

    Article  Google Scholar 

  41. C.Y. Yu, P.W. Kao and C.P. Cheng: Acta Mater, 2005, vol. 53, pp. 4019-28.

    Article  Google Scholar 

  42. N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: Acta Mater, 2009, vol. 57, pp. 4198-208.

    Article  Google Scholar 

  43. G. E. Dieter: Mechanical Metallurgy, 4th ed., McGraw-Hill Book Co., London, 1988, pp. 289-90.

    Google Scholar 

  44. S. P. Tsai, C. H Jen, H. W. Yen, C. Y. Chen, M. C. Tsai, C. Y. Huang and J. R. Yang: Mater. Charact, 2017, vol. 123, pp. 153-58.

    Article  Google Scholar 

  45. N. Saeidi, F. Ashrafizadeh, B. Niroumand: Mater. Sci. Eng. A, 2014, vol. 599, pp. 145-149.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported partly by a project of “Creation of New Principles in the Multi-scale Design of Steels Based on Light Element Strategy” through the Core Research for Evolutional Science and Technology in the Japan Science and Technology Agency (JST-CREST) and partly by a project of “Research on the Relation between Microstructure and Ductile Fracture in Steel” in the Iron and Steel Institute of Japan (ISIJ), which are gratefully appreciated. NK also thanks a financial support from the Grant-in-Aid for Young Scientists (A) (Grant No. 23686103) through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elango Chandiran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 9, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiran, E., Sato, Y., Kamikawa, N. et al. Effect of Ferrite/Martensite Phase Size on Tensile Behavior of Dual-Phase Steels with Nano-Precipitation of Vanadium Carbides. Metall Mater Trans A 50, 4111–4126 (2019). https://doi.org/10.1007/s11661-019-05353-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05353-3

Navigation