Skip to main content

Advertisement

Log in

A Deformation Mechanism Map for Incoloy 800H Optimized Using the Genetic Algorithm

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A total of fifty-eight Incoloy 800H samples were creep tested between temperatures of 1023 K and 1293 K, stresses of 14.1 to 105 MPa, and average grain sizes of 87.7 to 315 µm. Combined with data obtained by the National Institute for Materials Science (NIMS), a deformation mechanism map (DMM) for Incoloy 800H was produced. Optimization of the fit of the constitutive creep equations to the experimental data was performed using a global search iterative numerical optimization tool called a genetic algorithm (GA). It was found that the data were well represented by both high-temperature and low-temperature power-law creep mechanisms, but the extent of the influence of diffusion-based creep mechanisms, most specifically Coble creep, will require further investigation. A training and test method was performed to validate the solution and to test the extrapolability of the dataset. It was determined that the extrapolability of the data in all directions of the DMM was generally low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Incoloy Alloys 800H & 800HT, SMC-047, Special Metals Corporation, New Hartford, NY, (2004)

  2. ASTM B 407 - 08a: Standard Specification for Nickel-Iron-Chromium Alloy Seamless Pipe and Tube, American Society for Testing and Materials, West Conshohocken, PA, (2008)

  3. Y. Cao, H. Di, and R.D.K. Misra: J. Nucl. Mater., 452, 77–86 (2014)

    Article  Google Scholar 

  4. L. Tan, T.R. Allen, and Y. Yang: Corros. Sci., 53, 703–11 (2011)

    Article  Google Scholar 

  5. K.I. Choudhry, D.A. Guzonas, D.T. Kallikragas, and I.M. Svishchev: Corros. Sci., 111, 574–82 (2016)

    Article  Google Scholar 

  6. J.K. Wright, L.J. Carroll, C. Cabet, T.M. Lillo, J.K. Benz, J.A. Simpson, W.R. Lloyd, J.A. Chapman, and R.N. Wright: Nucl. Eng. Des., 251, 252–60 (2012)

    Article  Google Scholar 

  7. K. Natesan and P.S. Shankar: J. Nucl. Mater., 394, 46–51 (2009)

    Article  Google Scholar 

  8. H. Almostaneer, H. Schrijen, K. Barai, and A. Al-Meshari: Advances in Materials and Processing Technologies, 1, 56–66 (2015)

    Google Scholar 

  9. L.A. Spyrou, P.I. Sarafoglou, N. Aravas, and G.N. Haidemenopoulos: Eng. Fail. Anal., 45, 456–69 (2014)

    Article  Google Scholar 

  10. D.S. Grierson, G. Cao, P. Brooks, P. Pezzi, A. Glaudell, D. Kuettel, G. Fischer, T. Allen, K. Sridharan, and W.C. Crone: Metall. Mater. Trans. E, 4, 13 21 (2017)

    Google Scholar 

  11. M.E. Kassner: Fundamentals of Creep in Metals and Alloys, 2nd ed., Elsevier, Amsterdam, (2008)

    Google Scholar 

  12. F. Cao: Mater. Sci. Eng. A, 643, 169–74 (2015)

    Article  Google Scholar 

  13. J. Vanaja, K. Laha, and M.D. Mathew: Metall. Mater. Trans. A, 45, 5076–84 (2014)

    Article  Google Scholar 

  14. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, UK, (1982)

    Google Scholar 

  15. E.W. Hart: Acta Metall., 5, 597 (1957)

    Article  Google Scholar 

  16. S.L. Robinson and O.D. Sherby: Acta Metall., 17, 109–25 (1969)

    Article  Google Scholar 

  17. J. Weertman: J. Mech. Phys. Solids, 4, 230–34 (1956)

    Article  Google Scholar 

  18. J. Weertman: Trans. Metal. Soc. AIME, 227, 1475–76 (1963)

    Google Scholar 

  19. F.R.N. Nabarro, Report of a Conference on the Strength of Solids, The Physical Society, London, (1948)

    Google Scholar 

  20. C. Herring, J. Appl. Phys., 21, 437–45 (1950)

    Article  Google Scholar 

  21. R.L. Coble, J. Appl. Phys., 34, 1679–82 (1963)

    Article  Google Scholar 

  22. J. Weertman and J.R. Weertman, Physical Metallurgy, North-Holland Publishers, Amsterdam, 793 (1965)

    Google Scholar 

  23. F.R. Larson, J. Miller, Trans. ASME, 74, 765–75 (1952)

    Google Scholar 

  24. W. Ren and R.W. Swindeman: J. Press. Vessel Technol., 2014, vol. 136, art. no. 054001.

    Article  Google Scholar 

  25. ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York, NY, (2011)

  26. API RP 530: Recommended Practice for Calculation of Heater-Tube Thickness in Petroleum Refineries, American Petroleum Institute, Washington, D.C., (1978)

  27. F.C. Monkman, N.J. Grant, Proc. ASTM, 56, 593–620 (1956)

    Google Scholar 

  28. R.W. Swindeman, D.L. Marriott, ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, 3A, 1–11 (1993)

  29. S. Ueda, T. Kameyama, T. Matsunaga, K. Kitazono, and E. Sato: J. Phys. Conf. Ser., 2010, vol. 240, art. no. 012073.

    Article  Google Scholar 

  30. T. Matsunaga, S. Ueda, E. Sato, Scripta Mater., 63, 516–19 (2010)

    Article  Google Scholar 

  31. M. Kawasaki, T.G. Langdon, J. Mater. Sci., 47, 7726–34 (2012)

    Article  Google Scholar 

  32. N. Chawake, N.T.B.N. Koundinya, A.K. Srivastav, R.S. Kottada, Scripta Mater., 107, 63–66 (2015)

    Article  Google Scholar 

  33. N. Bano, A.K. Koul, M. Nganbe, Metall. Mater. Trans. A, 45, 1928–36 (2014)

    Article  Google Scholar 

  34. J.H. Holland: Adaptation in Natural and Artificial Systems, Massachusetts Institute of Technology Press, Cambridge, MA, (1992)

    Book  Google Scholar 

  35. R.L. Haupt and S.E. Haupt: Practical Genetic Algorithms, 2nd ed., John Wiley & Sons, Hoboken, NJ, (2004)

    Google Scholar 

  36. ASTM E8/E8M - 16a: Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, West Conshohocken, PA, (2016)

  37. ASTM E2627 - 10: Standard Practice for Determining Average Grain Size Using Electron Backscatter Diffraction (EBSD) in Fully Recrystallized Polycrystalline Materials, American Society for Testing and Materials, West Conshohocken, PA, (2010)

  38. ASTM E112 - 12: Standard Test Methods for Determining Average Grain Size, American Society for Testing and Materials, West Conshohocken, PA, (2012)

  39. ASTM E139 - 11: Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, American Society for Testing and Materials, West Conshohocken, PA, (2011)

  40. F. Garofalo, Trans. Metal. Soc. AIME, 227, 351–56 (1963)

    Google Scholar 

  41. Data Sheets on the Elevated-Temperature Properties of Iron Based 21Cr-32Ni-Ti-Al Alloy for Heat Exchanger Seamless Tubes (NCF 800H TB), No. 26B, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, (1998)

  42. T. Back: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press, Oxford, UK, 1996.

    Google Scholar 

  43. L. Prechelt, Neural Networks: Tricks of the Trade, 2nd ed., Springer, Berlin, Heidelberg, 53–67 (2012)

    Book  Google Scholar 

  44. E. Whitley, J. Ball, Critical Care, 6, 66 (2001)

    Article  Google Scholar 

  45. F.R.N. Nabarro, Mater. Sci. Eng. A, 387–389, 659–64 (2004)

    Article  Google Scholar 

  46. S. Huang, D.W. Brown, B. Clausen, Z. Teng, Y. Gao, P.K. Liaw, Metall. Mater. Trans. A, 43, 1497–508 (2012)

    Article  Google Scholar 

  47. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, Mater. Sci. Eng. A, 565, 382–91 (2013)

    Article  Google Scholar 

  48. R.W. Hayes, R.R. Unocic, M. Nasrollahzadeh, Metall. Mater. Trans. A, 46, 218–28 (2015)

    Article  Google Scholar 

  49. L.J. Meng, J. Sun, H. Xing, J. Nucl. Mater., 427, 116–20 (2012)

    Article  Google Scholar 

  50. M.T. Abdu, M.S. Soliman, E.A. El-Danaf, A.A. Almajid, F.A. Mohamed, Mater. Sci. Eng. A, 531, 35–44 (2012)

    Article  Google Scholar 

  51. Data Sheets on the Elevated-Temperature Stress Relaxation Properties of Iron Based 21Cr-32Ni-Ti-Al Alloy for Corrosion-Resisting and Heat-Resisting Superalloy Bar (NCF 800H-B), No. 47, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, (1999)

  52. Data Sheets on the Elevated-Temperature Properties of Iron Based 21Cr-32Ni-Ti-Al Superalloy for Corrosion-Resisting and Heat-Resisting Superalloy Plates (NCF 800H-P), No. 27B, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, (2000)

Download references

Acknowledgments

The authors wish to thank the Methanex Corporation for their continuing sponsorship of this research, and the Tubacex and Schmidt + Clemens groups for generously providing the materials for testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron L. Beardsley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 4, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beardsley, A.L., Bishop, C.M. & Kral, M.V. A Deformation Mechanism Map for Incoloy 800H Optimized Using the Genetic Algorithm. Metall Mater Trans A 50, 4098–4110 (2019). https://doi.org/10.1007/s11661-019-05350-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05350-6

Navigation