Skip to main content
Log in

Effects of Strain Rate on the TRIP–TWIP Transition of an Austenitic Fe-18Mn-2Si-2Al Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A fully austenitic Fe-18Mn-2Si-2Al transformation-induced plasticity (TRIP) steel was tensile tested from quasi-static to low-dynamic regime at three different strain rates: 4.7 × 10−4, 1.3 × 10−1, and 8.3 × 100 s−1. Typical two-stage transformation mechanism, TRIP γ → ε → α′, was observed for samples tested at 4.7 × 10−4 s−1. At higher strain rates, the increase in temperature due to adiabatic plastic work shifts the stacking fault energy (SFE) towards a twinning-induced plasticity–SFE-range modifying the mechanical behavior of the alloy. This change on the deformation mechanism leads to a lower work hardening capacity and a higher elongation to rupture in samples tested at 1.3 × 10−1 and 8.3 × 100 s−1. In this context, the alloy maintains its energy absorption capability with a maximum reduction of 3.6 pct according to the Rm × A parameter. The Md temperature, experimentally determined in the present study, proved to be a useful tool for understanding the material’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. De Cooman BC, Chin K, Kim J (2011) In: Chiaberge M (ed) New Trends and Developments in Automotive System Engineering. InTech, London, pp. 101–28

    Google Scholar 

  2. 2 H. Hofmann, D. Mattissen, and T.W. Schaumann: Materwiss. Werksttech., 2006, vol. 37, pp. 716–23.

    Article  Google Scholar 

  3. 3 O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Article  Google Scholar 

  4. Grässel O, Frommeyer G, Derder C (1997) J Phys IV 07:383

    Google Scholar 

  5. 5 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  Google Scholar 

  6. 6 A. Sato, K. Soma, and T. Mori: Acta Metall., 1982, vol. 30, pp. 1901–7.

    Article  Google Scholar 

  7. 7 M.C. Mcgrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A, 2013, vol 44, pp 4634–4643.

    Article  Google Scholar 

  8. 8 H. Ding, H. Ding, D. Song, Z. Tang, and P. Yang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 868–73.

    Article  Google Scholar 

  9. 9 S.S.F. de Dafé, F.L. Sicupira, F.C.S. Matos, N.S. Cruz, D.R. Moreira, and D.B. Santos: Mater. Res., 2013, vol. 16, pp. 1229–36.

    Article  Google Scholar 

  10. 10 L. Bracke, L. Kestens, and J. Penning: Scr. Mater., 2007, vol. 57, pp. 385–8.

    Article  Google Scholar 

  11. 11 S.T. Pisarik and D.C. Aken: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1009–18.

    Article  Google Scholar 

  12. 12 W.Y. Jang, Q. Gu, J. Van Humbeeck, and L. Delaey: Mater. Charact., 1995, vol. 34, pp. 67–72.

    Article  Google Scholar 

  13. 13 D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig: Acta Mater., 2014, vol. 68, pp. 238–53.

    Article  Google Scholar 

  14. 14 D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp. 178–90.

    Article  Google Scholar 

  15. 15 S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.

    Article  Google Scholar 

  16. 16 S. Curtze and V.T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.

    Article  Google Scholar 

  17. 17 J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, and J.E. Wittig: Mater. Sci. Eng. A, 2018, vol. 711, pp. 78–92.

    Article  Google Scholar 

  18. 18 H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  Google Scholar 

  19. 19 L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, and J.W. Richardson: J. Appl. Phys., 1997, vol. 81, pp. 594–600.

    Article  Google Scholar 

  20. 20 S. Xu, D. Ruan, J.H. Beynon, and Y. Rong: Mater. Sci. Eng. A, 2013, vol. 573, pp. 132–40.

    Article  Google Scholar 

  21. 21 I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.

    Article  Google Scholar 

  22. 22 P. Kürnsteiner, C. Commenda, E. Arenholz, L. Samek, D. Stifter, and H. Groiss: Materialia, 2018, vol. 1, pp. 70–7.

    Article  Google Scholar 

  23. 23 S. Pramanik, A.A. Gazder, A.A. Saleh, and E. V Pereloma: Mater. Sci. Eng. A, 2018, vol. 731, pp. 506–19.

    Article  Google Scholar 

  24. 24 R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345–51.

    Article  Google Scholar 

  25. 25 B.K. Zuidema, D.K. Subramanyam, and W.C. Leslie: Metall. Mater. Trans. A, 1987, vol. 18A, pp. 1629–39.

    Article  Google Scholar 

  26. 26 W.C. Leslie and G.C. Rauch: Metall. Mater. Trans. A, 1978, vol. 9A, pp. 343–9.

    Article  Google Scholar 

  27. 27 F. Lu, P. Yang, L. Meng, F. Cui, and H. Ding: J. Mater. Sci. Technol., 2011, vol. 27, pp. 257–65.

    Article  Google Scholar 

  28. 28 S. V. Astafurov, G. G. Maier, E. V. Melnikov, V. A. Moskvina, M. Yu. Panchenko, E G. Astafurova: Mater. Sci. Eng. A, 2019, vol. 756, pp. 365–72.

    Article  Google Scholar 

  29. 29 J. A. Lichtenfeld, M. C. Mataya, C. J. Van Tyne: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 147–61.

    Article  Google Scholar 

  30. 30 W.-S. Lee, G.-L. Xiea, and C.-F. Lin: Mater. Sci. Eng. A, 1998, vol. 257, pp. 256–67.

    Article  Google Scholar 

  31. 31 P. Dixon, D. Parry: Journal de Physique IV, 1991, vol. 01, pp. 85-92.

    Google Scholar 

  32. Klitschke S, Trondl A, Huberth F, Liewald M (2018) IOP Conf Ser Mater Sci Eng 418:1

    Google Scholar 

  33. 33 L. Remy: Acta Metall., 1977, vol. 25, pp. 173–9.

    Article  Google Scholar 

  34. 34 O.A. Zambrano: J. Eng. Mater. Technol., 2016, vol. 138, p. 041010.

    Article  Google Scholar 

  35. 35 G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  36. 36 P.J. Ferreira and P. Müllner: Acta Mater., 1998, vol. 46, pp. 4479–84.

    Article  Google Scholar 

  37. 37 Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31, pp. 355–60.

    Article  Google Scholar 

  38. 38 J. Kim and B.C. De Cooman: Mater. Sci. Eng. A, 2016, vol. 676, pp. 216–31.

    Article  Google Scholar 

  39. 39 F. Berrenberg, C. Haase, L.A. Barrales-mora, and D.A. Molodov: Mater. Sci. Eng. A, 2016, vol. 681, pp. 56–64.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of CONICET Argentina under Grants PUE096-IFIR and PDTS-251. As well, the contribution of Professor Dr.-Ing. Lais Mujica Roncery, Universidad Pedagógica y Tecnológica de Colombia, on thermodynamic calculations, and the support of Dr. Laura Buttigliero, IFIR-CONICET, by TEM characterization are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raposo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raposo, M., Martín, M., Giordana, M.F. et al. Effects of Strain Rate on the TRIP–TWIP Transition of an Austenitic Fe-18Mn-2Si-2Al Steel. Metall Mater Trans A 50, 4058–4066 (2019). https://doi.org/10.1007/s11661-019-05331-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05331-9

Navigation