Skip to main content
Log in

Hall–Petch Slope in Ultrafine Grained Al-Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Hall–Petch relation has long been used to relate the yield strength of a metal to its grain sizes in which the effectiveness of grain size strengthening in the metal is dictated by the Hall–Petch coefficient (slope). Therefore, understanding the microstructural dependence of the Hall–Petch slope would be very useful in designing new high-strength ultrafine grained (UFG) metallic materials. In this study, we investigated the microstructural factors affecting the Hall–Petch slope in UFG Al-Mg alloys with an average grain size range from 374 to 639 nm and different Mg contents of 0, 2.5, 5, and 7.5 at. pct. The rods prepared by extrusion of mechanically alloyed powder compacts were annealed for 5 hours at 380 °C, 420 °C, and 500 °C respectively followed by water quenching to produce the alloy samples in this study. The measured Hall–Petch slopes of the samples were found to increase with increasing Mg content and had higher values than those previously reported for Al(Mg) solid solutions with Mg concentrations comparable to the Mg contents in this study. Analysis of X-ray diffraction, transmission electron microscopy, and atom probe tomography experimental data as well as strengthening mechanisms demonstrates that the formation of nanoscale MgO dispersions plays a major role in the improved Hall–Petch slope observed in Al-Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462-540.

    Article  Google Scholar 

  2. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    Google Scholar 

  3. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747.

    Article  Google Scholar 

  4. R. Armstrong, I. Codd, R.M. Douthwaite and N.J. Petch: Philos. Mag., 1962, vol. 7, pp. 45-58.

    Article  Google Scholar 

  5. N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198-4208.

    Article  Google Scholar 

  6. N. Hansen and P. Brondsted: Res. Mechanica, 1980, vol. 1, pp. 197-213.

    Google Scholar 

  7. E. Nembach: Scr. Mater., 1990, vol. 24, pp. 787-792.

    Article  Google Scholar 

  8. G.S. Ansell and F.V. Lenel: Acta Metall., 1960, vol. 8, pp. 612-616.

    Article  Google Scholar 

  9. C.L. Li, Q.S. Mei, J.Y. Li, F. Chen, Y. Ma and X.M. Mei: Scr. Mater., 2018, vol. 153, pp. 27-30.

    Article  Google Scholar 

  10. N. Hansen: Acta Metall., 1969, vol. 17, pp. 637-642.

    Article  Google Scholar 

  11. Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda: Mater. Sci. Eng. A, 2003, vol. 354, pp. 298-305.

    Article  Google Scholar 

  12. H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A, 1999, vol. 265, pp. 188-196.

    Article  Google Scholar 

  13. M. Hutchison and R. Pascoe: Metal Sci. J., 1972, vol. 6, pp. 90-95.

    Article  Google Scholar 

  14. K. Nakanishi and H. Suzuki: Trans. Japan Inst. Met., 1974, vol. 15, pp. 435-440.

    Article  Google Scholar 

  15. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov and X. Sauvage: Scr. Mater., 2010, vol. 63, pp. 949-952.

    Article  Google Scholar 

  16. A. Khorsand-Zak, W.H. Abd-Majid, M.E. Abrishami and R. Yousefi: Solid State Sci., 2011, vol. 13, pp. 251-56.

    Article  Google Scholar 

  17. A.R. Stokes and A.J.C. Wilson: Proc. Phys. Soc., 1944, vol. 56, pp. 174.

    Article  Google Scholar 

  18. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Article  Google Scholar 

  19. G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34-46.

    Article  Google Scholar 

  20. M. Cohen: Rev. Sci. Instrum., 1935, vol. 6, pp. 68-74.

    Article  Google Scholar 

  21. V.A. Lubarda: Mech. Mater., 2003, vol. 35, pp. 53-68.

    Article  Google Scholar 

  22. J. Chen, L. Lu and K. Lu: Scr. Mater., 2006, vol. 54, pp. 1913-1918.

    Article  Google Scholar 

  23. H. Baker: ASM Handbook, ASM International, Materials Park, 1992.

    Google Scholar 

  24. A. Devaraj, R. Colby, W.P. Hess, D.E. Perea and S. Thevuthasan: J. Phys. Chem. Lett., 2013, vol. 4, pp. 993-998.

    Article  Google Scholar 

  25. H. Alihosseini, G. Faraji, A. Dizaji and K. Dehghani: Mater. Charact., 2012, vol. 68, pp. 14-21.

    Article  Google Scholar 

  26. P. Bazarnik, Y. Huang, M. Lewandowska and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 626, pp. 9-15.

    Article  Google Scholar 

  27. H. Choi, S. Lee, J. Park and D. Bae: Scr. Mater., 2008, vol. 59, pp. 1123-1126.

    Article  Google Scholar 

  28. M. Eizadjou, H.D. Manesh and K. Janghorban: J. Alloys Compds., 2009, vol. 474, pp. 406-415.

    Article  Google Scholar 

  29. G.J. Fan, H. Choo, P.K. Liaw and E.J. Lavernia: Acta Mater., 2006, vol. 54, pp. 1759-1766.

    Article  Google Scholar 

  30. M. Furukawa, Z. Horita, M. Nemoto, R. Valiev and T. Langdon: Acta Mater., 1996, vol. 44, pp. 4619-4629.

    Article  Google Scholar 

  31. R. Hayes, D. Witkin, F. Zhou and E. Lavernia: Acta Mater., 2004, vol. 52, pp. 4259-4271.

    Article  Google Scholar 

  32. Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31, pp. 691-701.

    Article  Google Scholar 

  33. L. Hu, Y. Li, E. Wang and Y. Yu: Mater. Sci. Eng. A, 2006, vol. 422, pp. 327-332.

    Article  Google Scholar 

  34. K.J. Kim, D.Y. Yang and J.W. Yoon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7927-7930.

    Article  Google Scholar 

  35. H.-J. Lee, J.-K. Han, S. Janakiraman, B. Ahn, M. Kawasaki and T.G. Langdon: J. Alloys Compds., 2016, vol. 686, pp. 998-1007.

    Article  Google Scholar 

  36. A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam and T.G. Langdon: Mater. Sci. Eng. A, 2012, vol. 532, pp. 139-145.

    Article  Google Scholar 

  37. S. Malopheyev and R. Kaibyshev: Mater. Sci. Eng. A, 2015, vol. 620, pp. 246-252.

    Article  Google Scholar 

  38. S. Malopheyev, V. Kulitskiy and R. Kaibyshev: J. Alloys Compds., 2017, vol. 698, pp. 957-966.

    Article  Google Scholar 

  39. B. Talebanpour, R. Ebrahimi and K. Janghorban: Mater. Sci. Eng. A, 2009, vol. 527, pp. 141-145.

    Article  Google Scholar 

  40. B. Tolaminejad and K. Dehghani: Mater. Des., 2012, vol. 34, pp. 285-292.

    Article  Google Scholar 

  41. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scr. Mater., 2002, vol. 47, pp. 893-899.

    Article  Google Scholar 

  42. T. Shanmugasundaram, M. Heilmaier, B. Murty and V.S. Sarma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7821-7825.

    Article  Google Scholar 

  43. Z.C. Cordero, B.E. Knight and C.A. Schuh: Int. Mater. Rev., 2016, vol. 61, pp. 495-512.

    Article  Google Scholar 

  44. R.W. Armstrong and R.M. Douthwaite: MRS Proc., 2011, vol. 362, pp. 41.

    Article  Google Scholar 

  45. M. Wagenhofer, M. Erickson-Natishan, R.W. Armstrong and F.J. Zerilli: Scr. Mater., 1999, vol. 41, pp. 1177-1184.

    Article  Google Scholar 

  46. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Philo. Mag. A, 1998, vol. 78, pp. 203-216.

    Article  Google Scholar 

  47. R.E. Smallman and A. Ngan: Physical Metallurgy and Advanced Materials, Butterworth-Heinemann, Burlington, 2011, pp. 321-324.

    Google Scholar 

  48. J.C. Li: Trans. Metall. Soc. AIME, 1963, vol. 227, p. 239.

    Google Scholar 

  49. J.C. Li: Philos. Mag., 1969, vol. 19, pp. 189-198.

    Article  Google Scholar 

  50. G.E. Dieter and D.J. Bacon (1986) Mechanical Metallurgy, McGraw-Hill, New York.

    Google Scholar 

  51. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia and J.M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141-155.

    Article  Google Scholar 

  52. E. Huskins, B. Cao and K. Ramesh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1292-1298.

    Article  Google Scholar 

  53. T. Mukai, K. Higashi and S. Tanimura: Mater. Sci. Eng. A, 1994, vol. 176, pp. 181-189.

    Article  Google Scholar 

  54. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander and H.-E. Ekström: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1999-2006.

    Article  Google Scholar 

  55. M. Besterci: Scr. Metall., 1994, vol. 30, pp. 1145-1149.

    Article  Google Scholar 

  56. T.H. Courtney: Mechanical Behavior of Materials, Waveland Press, Long Grove, 2005.

    Google Scholar 

  57. L.M. Brown and R.K. Ham: Strengthening methods in crystals, Elsevier, Amsterdam, 1971.

    Google Scholar 

  58. M.A. Meyers and K.K. Chawla: Mechanical behavior of materials, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  59. C.V. Di Leo and J.J. Rimoli: Scr. Mater., 2019, vol. 166, pp. 149-153.

    Article  Google Scholar 

  60. R. Picu and Z. Xu: Scr. Mater., 2007, vol. 57, pp. 45-48.

    Article  Google Scholar 

  61. H. Aboulfadl, J. Deges, P. Choi and D. Raabe: Acta Mater., 2015, vol. 86, pp. 34-42.

    Article  Google Scholar 

  62. A. Cottrell and B. Bilby: Proc. Phys. Soc. A, 1949, vol. 62, pp. 49.

    Article  Google Scholar 

Download references

Acknowledgments

D.S. Zhou is grateful to the financial support from the Natural Science Foundation of China (Grant No. 51701036) and the Fundamental Research Funds for the Central Universities (Grant No. N160203001) to conduct this study. D.S. Zhou wishes to thank Prof. Dierk Raabe for his valuable discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengshan Zhou or Deliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Wang, H., Saxey, D.W. et al. Hall–Petch Slope in Ultrafine Grained Al-Mg Alloys. Metall Mater Trans A 50, 4047–4057 (2019). https://doi.org/10.1007/s11661-019-05329-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05329-3

Navigation