Skip to main content
Log in

Effect of Hydrogen on the Substructure of Lenticular Martensite in Fe-31Ni Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study investigated the effect of hydrogen on the substructure of martensite in Fe-31Ni alloy. In both the hydrogen-charged and uncharged specimens, typical lenticular martensite plates formed after subzero cooling. However, we found that the fraction of twinned region (including the area of midrib) in lenticular martensite plate increased with increasing hydrogen content. In addition, the width of individual twins in the hydrogen-charged specimen was slightly smaller than that in the uncharged specimen. These results indicated that the existence of hydrogen facilitated twinning deformation as a lattice invariant deformation. We presented a comprehensive discussion about the reason why hydrogen enhanced twinning deformation. Even though tetragonality of martensite in the hydrogen-charged specimen could not be confirmed by X-ray diffraction, the transmission electron microscopy observations and the first-principles calculations suggested that hydrogen might increase the tetragonality of martensite. We proposed that solid solution hardening and an increase in the tetragonality of martensite by the existence of hydrogen were the possible reasons for facilitating twinning deformation as a lattice invariant deformation in martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. 1.S.P. Lynch: Acta Metall., 1984, vol. 32, pp. 79–90.

    Article  Google Scholar 

  2. 2.I.A. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1085–1103.

    Article  Google Scholar 

  3. 3.M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, and P. Sofronis: Int. J. Fract., 2015, vol. 196, pp. 223–43.

    Article  Google Scholar 

  4. 4.J.P. Hirth: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 861–90.

    Article  Google Scholar 

  5. 5.P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1998, vol. 46, pp. 1749–57.

    Article  Google Scholar 

  6. 6.I.M. Robertson: Eng. Fract. Mech., 1999, vol. 64, pp. 649–73.

    Article  Google Scholar 

  7. 7.P. Sofronis and I.M. Robertson: Philos. Mag. A, 2002, vol. 82, pp. 3405–13.

    Article  Google Scholar 

  8. 8.M. Tanino, H. Komatsu, and S. Fukai: Phys. Colloq., 1982, vol. 43 (C4), pp. 503–08.

    Google Scholar 

  9. 9.M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 1601–06.

    Article  Google Scholar 

  10. 10.Y.H. Kim and J.W. Morris, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 1883–88.

    Article  Google Scholar 

  11. 11.Y.H. Kim, H.J. Kim, and J.W. Morris, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 1157–64.

    Article  Google Scholar 

  12. 12.A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–89.

    Article  Google Scholar 

  13. 13.A. Shibata, T. Murata, H. Takahashi, T. Matsuoka, and N. Tsuji: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5685–96.

    Article  Google Scholar 

  14. 14.Q. Yang and J.L. Luo: Mater. Sci. Eng. A, 2000, vol. A238, pp. 75–83.

    Article  Google Scholar 

  15. 15.Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1327–39.

    Article  Google Scholar 

  16. 16.T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka, and Y. Murakami: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2604–19.

    Article  Google Scholar 

  17. 17.T. Maki: Mater Sci. Forum, 1990, vols. 56–58, pp. 157–68.

    Google Scholar 

  18. 18.R.L. Patterson and C.M. Wayman: Acta Metall., 1966, vol. 14, pp. 347–69.

    Article  Google Scholar 

  19. 19.A. Shibata, S. Morito, T. Furuhara, and T. Maki: Scripta Mater., 2005, vol. 53, pp. 597–602.

    Article  Google Scholar 

  20. 20.A. Shibata, S. Morito, T. Furuhara, and T. Maki: Acta Mater., 2009, vol. 57, pp. 483–92.

    Article  Google Scholar 

  21. K.D. Zilnyk, D.R. A. Junior, H.R.Z. Sandim, P.R. Rios, and D. Raabe: Acta Mater., 2018, vol. 143, pp. 227–36.

    Article  Google Scholar 

  22. 22.H.J Neuhauser and W. Pitsch: Acta Metall., 1971, vol. 19, pp. 337–44.

    Article  Google Scholar 

  23. 23.T. Kakeshita, K. Shimizu, T. Maki, and I. Tamura: Scripta Metall., 1980, vol. 14, pp. 1067–70.

    Article  Google Scholar 

  24. 24.A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki: Mater. Trans., 2008, vol. 49, pp. 1242–48.

    Article  Google Scholar 

  25. 25.M. Koyama, T. Ogawa, D. Yan, Y. Matsumoto, C.C. Tasan, K. Takai, and K. Tsuzaki: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 26423–26435.

    Article  Google Scholar 

  26. 26.G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–11186.

    Article  Google Scholar 

  27. 27.G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  Google Scholar 

  28. 28.P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–17979.

    Article  Google Scholar 

  29. 29.H.C. Herper, E. Hoffmann, and P. Entel: Phys. Rev. B, 1999, vol. 60, pp. 3839–48.

    Article  Google Scholar 

  30. 30.H. Ohtsuka, V.A. Dinh, T. Ohno, K. Tsuzaki, K. Tsuchiya, R. Sahara, H. Kitazawa, and T. Nakamura: ISIJ Int., 2015, vol. 55, pp. 2483–91.

    Article  Google Scholar 

  31. R.F. Bunshah and R.F. Mehl: Trans. AIME, 1953, vol. 197, pp. 1251–58.

    Google Scholar 

  32. 32.H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176A, pp. 191–202.

    Article  Google Scholar 

  33. 33.Y. Tobe and W.R. Tyson: Scripta Metall., 1977, vol. 11, pp. 849–52.

    Article  Google Scholar 

  34. 34.M. Umemoto, K. Minoda, and I. Tamura: Metallography, 1982, vol. 15, pp. 177–91.

    Article  Google Scholar 

  35. 35.T. Maki, S. Shimooka, S. Fujiwara, and T. Tamura: Trans. JIM, 1975, vol. 16, pp. 35–41.

    Article  Google Scholar 

  36. 36.S. Kajiwara and W.S. Owen: Scripta Metall., 1977, vol. 11, pp. 137–42.

    Article  Google Scholar 

  37. 37.R.G. Davies and C.L. Magee: Metall. Trans., 1970, vol. 1, pp. 2927–31.

    Google Scholar 

  38. 38.C.L. Magee and R.G. Davies: Acta Metall., 1972, vol. 20, pp. 1031–43.

    Article  Google Scholar 

  39. 39.A. Shibata, H. Yonezawa, K. Yabuuchi, S. Morito, T. Furuhara, and T. Maki: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 241–45.

    Article  Google Scholar 

  40. 40.M. Koyama, Y. Abe, K. Saito, E. Akiyama, K. Takai, and K. Tsuzaki: Scripta Mater., 2016, vol. 122, pp. 50–53.

    Article  Google Scholar 

  41. T. Maki and C.M. Wayman: Proc. 1st JIM Int. Symp. on New Aspects of Martensitic Transformation, Suppl. Trans. JIM, 1976. vol. 17, pp. 69–74.

  42. 42.Z. Nishiyama: Martensitic Transformation, Academic Press, Inc., New York, NY, 1978, pp. 2–6.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Japan Science and Technology Agency under the Industry-Academia Collaborative R&D Program “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinobu Shibata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, A., Enoki, M., Saji, N. et al. Effect of Hydrogen on the Substructure of Lenticular Martensite in Fe-31Ni Alloy. Metall Mater Trans A 50, 4027–4036 (2019). https://doi.org/10.1007/s11661-019-05320-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05320-y

Navigation