Skip to main content
Log in

Muon Spin Relaxation Study of Solute–Vacancy Interactions During Natural Aging of Al-Mg-Si-Cu Alloys

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Muon spin relaxation has the unique ability to detect very low concentrations of vacancies and vacancy–solute complexes in solids. In this work, we investigate quaternary Al-Mg-Si-Cu alloys and show that after quenching to room temperature from 848 K (575 °C), vacancies gradually become incorporated into clusters in the Al matrix. The total amount of vacancies in the material increases as small vacancy-rich clusters are formed, which is the opposite of the behavior in Cu-free Al-Mg-Si alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. A. Serizawa, S. Hirosawa and T. Sato, Metall. Mater. Trans. A 2008, vol. 39, pp. 243-251.

    Article  Google Scholar 

  2. F. De Geuser, W. Lefebvre and D. Blavette, Philosophical Magazine Letters 2006, vol. 86, pp. 227-234.

    Article  Google Scholar 

  3. K. Matsuda, A. Kawai, K. Watanabe, S. Lee, C.D. Marioara, S. Wenner, K. Nishimura, T. Matsuzaki, N. Nunomura, T. Sato, R. Holmestad and S. Ikeno, Mater Trans 2017, vol. 58, pp. 167-175.

    Article  Google Scholar 

  4. S. Wenner, C.D. Marioara, S.J. Andersen and R. Holmestad, Int J Mater Res 2012, vol. 103, pp. 948-954.

    Article  Google Scholar 

  5. F.A. Martinsen, F.J.H. Ehlers, M. Torsæter and R. Holmestad, Acta Mater 2012, vol. 60, pp. 6091-6101.

    Article  Google Scholar 

  6. J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay and A.J. Hill, Advanced Engineering Materials 2010, vol. 12, pp. 559-571.

    Article  Google Scholar 

  7. D.J. Chakrabarti and D.E. Laughlin, Progress in Materials Science 2004, vol. 49, pp. 389-410.

    Article  Google Scholar 

  8. K. Matsuda, S. Ikeno, Y. Uetani and T. Sato, Metall. Mater. Trans. A 2001, vol. 32, pp. 1293-1299.

    Article  Google Scholar 

  9. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort and R. Holmestad, Philos Mag 2007, vol. 87, pp. 3385-3413.

    Article  Google Scholar 

  10. J. Kim, E. Kobayashi and T. Sato, Mater Trans 2015, vol. 56, pp. 1771-1780.

    Article  Google Scholar 

  11. J. Kim, E. Kobayashi and T. Sato, Mater Trans 2011, vol. 52, pp. 906-913.

    Article  Google Scholar 

  12. P. Dumitraschkewitz, S.S.A. Gerstl, P.J. Uggowitzer, J.F. Löffler and S. Pogatscher, Advanced Engineering Materials 2017, vol. 19, p. 1600668.

    Article  Google Scholar 

  13. S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt and C.D. Marioara, Phys Rev B 2012, vol. 86, 104201.

    Article  Google Scholar 

  14. A. Yaouanc and P.D. de Réotier (2011) Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter. OUP, Oxford.

    Google Scholar 

  15. T. Matsuzaki, K. Ishida, K. Nagamine, I. Watanabe, G.H. Eaton and W.G. Williams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2001, vol. 465, pp. 365-383.

    Article  Google Scholar 

  16. S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara and R. Holmestad, Acta Mater 2013, vol. 61, pp. 6082-6092.

    Article  Google Scholar 

  17. T. Hatano, Y. Suzuki, M. Doyama, Y.J. Uemura, T. Yamazaki and J.H. Brewer, Hyperfine Interactions 1984, vol. 17, pp. 211-217.

    Article  Google Scholar 

  18. E. Sato, T. Hatano, Y. Suzuki, M. Imafuku, M. Sunaga, M. Doyama, Y. Morozumi, T. Suzuki and K. Nagamine, Hyperfine Interactions 1984, vol. 17, pp. 203-209.

    Article  Google Scholar 

  19. R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki and R. Kubo, Phys Rev B 1979, vol. 20, pp. 850-859.

    Article  Google Scholar 

  20. A. Schenck: Muon spin rotation spectroscopy. Taylor and Francis Inc, Philadelphia, PA (USA), 1985.

    Google Scholar 

  21. T. Yamazaki, Hyperfine Interactions 1979, vol. 6, pp. 115-125.

    Article  Google Scholar 

  22. R. Kadono, J. Imazato, T. Matsuzaki, K. Nishiyama, K. Nagamine, T. Yamazaki, D. Richter and J.M. Welter, Phys Rev B 1989, vol. 39, pp. 23-41.

    Article  Google Scholar 

  23. K. Nishimura, K. Matsuda, R. Komaki, N. Nunomra, S. Wenner, R. Holmestad, T. Matsuzaki, I. Watanabe and F.L. Pratt, Arch Metall Mater 2015, vol. 60, pp. 925-929.

    Article  Google Scholar 

  24. O. Hartmann, E. Karlsson, E. Wäckelgrd, R. Wäppling, D. Richter, R. Hempelmann and T.O. Niinikoski, Phys Rev B 1988, vol. 37, pp. 4425-4440.

    Article  Google Scholar 

  25. L. Ismer, M.S. Park, A. Janotti and C.G. Van de Walle, Phys Rev B 2009, vol. 80, p. 184110.

    Article  Google Scholar 

  26. M. Liu and J. Banhart, Materials Science and Engineering: A 2016, vol. 658, pp. 238-245.

    Article  Google Scholar 

  27. M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P.J. Uggowitzer and S. Pogatscher, Mater Design 2016, vol. 107, pp. 257-268.

    Article  Google Scholar 

  28. M.W. Zandbergen, Q. Xu, A. Cerezo and G.D.W. Smith, Acta Mater 2015, vol. 101, pp. 136-148.

    Article  Google Scholar 

  29. W.J. Kossler, A.T. Fiory, W.F. Lankford, J. Lindemuth, K.G. Lynn, S. Mahajan, R.P. Minnich, K.G. Petzinger and C.E. Stronach, Physical Review Letters 1978, vol. 41, pp. 1558-1561.

    Article  Google Scholar 

  30. D. Hatakeyama, K. Nishimura, K. Matsuda, T. Namiki, S. Lee, N. Nunomura, T. Aida, T. Matsuzaki, R. Holmestad, S. Wenner, and C.D. Marioara, Metall. Mater. Trans. A 2018, vol. 57, p. 627.

    Google Scholar 

  31. P. Lang, Y.V. Shan and E. Kozeschnik, Materials Science Forum 2014, vol. 794-796, pp. 963-970.

    Article  Google Scholar 

  32. P. Lang, T. Weisz, M.R. Ahmadi, E. Povoden-Karadeniz, A. Falahati and E. Kozeschnik, Advanced Materials Research 2014, vol. 922, pp. 406-411.

    Article  Google Scholar 

  33. S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara and R. Holmestad, Metall Mater Trans A 2014, vol. 45A, pp. 5777-5781.

    Article  Google Scholar 

Download references

This study has been supported by JSPS KAKENHI (Grant Number JP18H01747), The Norwegian–Japanese Aluminum alloy Research and Education Collaboration (INTPART), Project Number 249698, and The Japan Institute of Light Metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd Wenner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenner, S., Marioara, C.D., Nishimura, K. et al. Muon Spin Relaxation Study of Solute–Vacancy Interactions During Natural Aging of Al-Mg-Si-Cu Alloys. Metall Mater Trans A 50, 3446–3451 (2019). https://doi.org/10.1007/s11661-019-05285-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05285-y

Navigation