Skip to main content
Log in

Effect of Hydrogen Doping on Stress-Induced Martensitic Transformation in a Ti-Ni Shape Memory Alloy

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this paper, we report how the charged hydrogen in a Ti-50.8Ni (at. pct) alloy acts during stress-induced martensitic transformation and aging. Hydrogen is preferentially trapped in the B19′ martensite phase near the surface of the specimen. The hydride formed by hydrogenation dissociates during the stress-induced martensitic transformation. The hydrogen diffuses into the interior of the specimen through aging in air, resulting in suppression on the stress-induced martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. K. Otsuka and X. Ren: Prog. Mater. Sci, 2005, vol. 50, pp. 511–678.

    Article  Google Scholar 

  2. T. Duerig, A .Pelton and D. Stockel: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 149–160.

    Article  Google Scholar 

  3. F. Xiao, H. Chen, X. Jin, Z. Nie, T. Kakeshita and T. Fukuda: Sci. Rep, 2018, vol. 8, pp. 6099.

    Article  Google Scholar 

  4. X. Liang, F. Xiao, M. Jin, X. Jin, T. Fukuda and T. Kakeshita: Scr. Mater, 2017, vol. 134, pp. 42–46.

    Article  Google Scholar 

  5. 5. J.M. Jani, M. Leary, A. Subic and M.A. Gibson: Mater. Des, 2014, vol. 56, pp. 1078–1113.

    Article  Google Scholar 

  6. 6. F. Xiao, T. Fukuda and T. Kakeshita: Scr. Mater, 2016, vol. 124, pp. 133–137.

    Article  Google Scholar 

  7. K. Yokoyama, K. Hamada, K. Moriyama and K. Asaoka: Biomaterials, 2001, vol. 22, pp. 2257–2262.

    Article  Google Scholar 

  8. N. Wade, Y. Adachi and Y. Hosoi: Scr. Mater, 1990, vol. 24, pp.1051–1055.

    Article  Google Scholar 

  9. K. Yokoyama, S. Watabe, K. Hamada, J. Sakai, K. Asaoka and M. Nagumo: Mater. Sci. Eng. A, 2003, vol. 341, pp. 91–97.

    Article  Google Scholar 

  10. K. Yokoyama, K. Kaneko, K. Moriyama, K. Asaoka, J. Sakai and M. Nagumo: J. Biomed. Mater. Res, 2003, vol. 65A, pp. 182–187.

    Article  Google Scholar 

  11. K. Yokoyama, T. Ogawa, K. Asaoka, J. Sakai and M. Nagumo: Mater. Sci. Eng. A, 2003, vol. 360, pp. 153–159.

    Article  Google Scholar 

  12. 12. K. Yokoyama, M. Tomita and J. Sakai: Acta Mater, 2009, vol. 57, pp. 1875–1885.

    Article  Google Scholar 

  13. A. Biscarini, R. Campanella, B. Coluzzi, G. Mazzolai, L. Trotta, A. Tuissi and FM. Mazzolai: Acta Mater, 1999, vol. 47, pp. 4525–4533.

    Article  Google Scholar 

  14. A. Runciman, K.C. Chen, A.R. Pelton and C. Trépanier: SMST-2006 Proc. Int. Conf. on Shape Memory and Superelastic Technologies, Pacifi Grove, CA, USA, 2006, pp. 185–196, https://doi.org/10.1361/cp2006smst185.

  15. M. Kuběnová J. Zálešák, J. Čermák and A. Dlouhý: J. Alloy. Compd, 2013, vol. 577S, pp. S287–S290

    Article  Google Scholar 

  16. Y. Snir, M. Carl, N.A. Ley and M.L. Young: Shap. Mem. Superelasticity, 2017, vol. 3, pp. 443–456.

    Article  Google Scholar 

  17. 17. E. Letaief, T. Hassine and F. Gamaoun: Mater. Sci. Technol, 2017, vol. 33(13), pp. 1533–1538.

    Article  Google Scholar 

  18. H. Yin, Y. He, Z. Moumni and Q. Sun: Int. J. Fatigue, 2016, vol. 88. pp. 166–177.

    Article  Google Scholar 

  19. F. Gamaoun, M. Ltaief, T. Bouraoui, T.B. Zineb (2011) J. Intell. Mater. Syst. Struct 22:2053–2059.

    Article  Google Scholar 

  20. M. Tomita, K. Yokoyama, K. Asaoka and J. Sakai: Mater. Sci. Eng. A, 2008, vol. 476. pp. 308-315.

    Article  Google Scholar 

  21. E. Bonnot, R. Romero, L. Manosa, E. Vives and A. Planes: Phys. Rev. Lett, 2008, vol. 100, pp. 125901.

    Article  Google Scholar 

  22. 22. D. Noéus, P.-E. Werner, K. Alasafi and E. Schmidt-Ihn: Int. J. Hydrogen Energy, 1985, vol. 10. pp. 547-550.

    Article  Google Scholar 

  23. 23. J.L. Soubeyroux, D. Fruchart, G. Lorthioir, P. Ochin and D. Colin: J. Alloys. Compd. 1993, vol. 196, pp. 127-132.

    Article  Google Scholar 

  24. 24. T. Ohba, F. Yanagita, M. Mitsuka, T. Hara and K. Kato, Mater. Trans, 2002, vol. 43, pp. 798-801.

    Article  Google Scholar 

  25. R. Burch, N.B. Mason (1979) Faraday Trans. 75:561-577.

    Article  Google Scholar 

  26. F. Cuevas, M. Latroche, P. Ochin, A. Dezellus, J.F. Fernández, C. Sánchez and A. Percheron-Guégan: J. Alloys Compd, 2002, vol. 330-332, pp. 250-255.

    Article  Google Scholar 

  27. K. Yokoyama, S. Watabe, K. Hamada, J. Sakai, K. Asaoka and M. Nagumo: Mater. Sci. Eng. A, 2003, vol. 341(1-2), pp. 91-97.

    Article  Google Scholar 

Download references

This work was funded by the National Natural Science Foundation of China (Nos. 51871151, 51501113, U1564203), the National Key R&D Program of China (Nos. 2017YFB0703003, 2017YFB0406000), and the Iketani Science and Technology Foundation (No. 0301012-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiao, F., Liang, X. et al. Effect of Hydrogen Doping on Stress-Induced Martensitic Transformation in a Ti-Ni Shape Memory Alloy. Metall Mater Trans A 50, 3033–3037 (2019). https://doi.org/10.1007/s11661-019-05258-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05258-1

Navigation