Skip to main content
Log in

Effects of Hydrogen Charging on the Phase Transformation of Martensitic NiTi Shape Memory Alloy Wires

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Ti-rich martensitic NiTi shape memory alloy (SMA) wires of 0.5 mm diameter were tested under hydrogen-charging conditions to reveal the effects on phase transformation. Hydrogen charging was performed by immersion testing for several durations. The SMA wires were characterized by differential scanning calorimetry (DSC), scanning electron microscopy with energy dispersive spectroscopy, and synchrotron radiation X-ray diffraction (SR-XRD) for the the as-received, polished, and hydrogen-charged conditions. The DSC revealed the phase-transformation behavior of the NiTi SMA wires. Single and triple heating/cooling cycles in the DSC show the relationship between hydrogen and temperature on the material. Five distinct peaks (peaks I–V) are observed during heating/cooling in the DSC. Peak I corresponds to the martensite-to-austenite (M → A) transformation. Peaks II, III, and IV are related to hydrogen charging. Peak II appears at about 210–230 °C, while peaks III and IV appear at about 350 and 440 °C, respectively. These higher temperature peaks, peaks II–IV, were observed for the first time for a martensitic NiTi SMA due to the large temperature range covered using the DSC. Only one peak (peak V) appears during cooling and corresponds to the austenite-to-martensite transformation peak. Ex situ and in situ SR-XRD revealed the phases and the crystallographic relationship to peaks I–V in the DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678

    Article  Google Scholar 

  2. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  3. El Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4:91–104

    Article  Google Scholar 

  4. Benafan O, Brown J, Calkins FT, Kumar P, Stebner AP, Turner TL, Vaidyanathan R, Webster J, Young ML (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10:1–42

    Article  Google Scholar 

  5. Yokoyama K, Hamada K, Moriyama K, Asaoka K (2001) Degradation and fracture of Ni–Ti superelastic wire in an oral cavity. Biomaterials 22:2257–2262

    Article  Google Scholar 

  6. Wade N, Adachi Y, Hosoi Y (1990) A role of hydrogen in shape memory effect of Ti–Ni alloys. Scr Metall A 24:1051–1055

    Article  Google Scholar 

  7. Wade N, Adachi Y, Hosoi Y (1990) Effect of hydrogen on the shape memory effect and transformation behavior of Ti–Ni alloy. J Jpn Inst Metals 54:525–531 (in Japanese)

    Article  Google Scholar 

  8. Leu CC, Vokoun D, Hu CT (2002) Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall Mater Trans A 33A:17–23

    Article  Google Scholar 

  9. Horikawa K, Kawabata Y, Kobayashi H (2008) Spontaneous bending of Ni–Ti alloy plates caused by preferential hydrogen absorption. Mater Trans 49:2233–2237

    Article  Google Scholar 

  10. Gao YJ, Qiao WY, Chu JY, He KW (2004) The effect of hydride and martensite on the fracture toughness of TiNi shape memory alloy. Smart Mater Struct 13:24–28

    Article  Google Scholar 

  11. He JY, Gao KW, Su YJ, Qiao LJ, Chu WY (2004) The role of hydride, martensite and atomic hydrogen in hydrogen-induced delayed fracture of TiNi alloy. Mater Sci Eng, A 364:333–338

    Article  Google Scholar 

  12. Ota A, Yazaki Y, Yokoyama K, Sakai J (2009) Hydrogen absorption and thermal desorption behavior of Ni–Ti superelastic alloy immersed in neutral NaCl and NaF solutions under applied potential. Mater Trans 50:1843–1849

    Article  Google Scholar 

  13. Tomita M, Yokoyama K, Sakai J (2008) Effects of potential, temperature and pH on hydrogen absorption and thermal desorption behaviors of Ni–Ti superelastic alloy in 0.9% NaCl solution. Corros Sci 50:2061–2069

    Article  Google Scholar 

  14. Yokoyama K, Watabe S, Hamada K, Sakai J, Asaoka K, Nagumo M (2003) Susceptibility to delayed fracture of Ni–Ti superelastic alloy. Mater Sci Eng A 341:91–97

    Article  Google Scholar 

  15. Yokoyama K, Kaneko K, Moriyama K, Asaoka K, Sakai J, Nagumo M (2003) Hydrogen embrittlement of Ni–Ti superelastic alloy in fluoride solution. J Biomed Mater Res 65A:182–187

    Article  Google Scholar 

  16. Yokoyama K, Ogawa T, Asaoka K, Sakai J, Nagumo M (2003) Degradation of tensile strength of Ni–Ti superelastic alloy due to hydrogen absorption in methanol solution containing hydrochloric acid. Mater Sci Eng, A 360:153–159

    Article  Google Scholar 

  17. Yokoyama K, Eguchi T, Asaoka K, Nagumo M (2004) Effect of constituent phase of Ni–Ti shape memory alloy on susceptibility to hydrogen embrittlement. Mater Sci Eng, A 374:177–183

    Article  Google Scholar 

  18. Yokoyama K, Kaneko K, Ogawa T, Moriyama K, Asaoka K, Sakai J (2005) Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials 26:101–108

    Article  Google Scholar 

  19. Yokoyama K, Ogawa T, Takashima K, Asaoka K, Sakai J (2007) Hydrogen embrittlement of Ni–Ti superelastic alloy aged at room temperature after hydrogen charging. Mater Sci Eng, A 466:106–113

    Article  Google Scholar 

  20. Yokoyama K, Tomita M, Asaoka K, Sakai J (2007) Hydrogen absorption and thermal desorption behaviors of Ni–Ti superelastic alloy subjected to sustained tensile-straining test with hydrogen charging. Scr. Mater 57:393–396

    Article  Google Scholar 

  21. Yokoyama K, Tomita M, Sakai J (2009) Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni–Ti superelastic alloy. Acta Mater 57:1875–1885

    Article  Google Scholar 

  22. Yokoyama K, Nagaoka A, Sakai J (2012) Effects of the hydrogen absorption conditions on the hydrogen embrittlement behavior of Ni–Ti superelastic alloy. ISIJ Int 52:255–262

    Article  Google Scholar 

  23. Ogawa T, Yokozawa E, Oda T, Maruoka K, Sakai J (2015) Hydrogen embrittlement behavior of Ni–Ti shape memory alloy with different microstructures in acidic fluoride solution. Int J Mech Mater Eng 10:12

    Article  Google Scholar 

  24. Biscarini A, Coluzzi B, Mazzolai G, Tuissi A, Mazzolai FM (2003) Extraordinary high damping of hydrogen-doped NiTi and NiTiCu shape memory alloys. J Alloys Compd 355:52–57

    Article  Google Scholar 

  25. Biscarini A, Campanella R, Coluzzi B, Mazzolai G, Trotta L, Tuissi A, Mazzolai FM (1999) Martensitic transitions and mechanical spectroscopy of Ni50.8Ti49.2 alloy containing hydrogen. Acta Mater 47:4525–4533

    Article  Google Scholar 

  26. Mazzolai FM, Biscarini A, Coluzzi B, Mazzolai G, Villa E, Tuissi A (2007) Low-frequency internal friction of hydrogen-free and hydrogen-doped NiTi alloys. Acta Mater 55:4243–4252

    Article  Google Scholar 

  27. Fan G, Otsuka K, Ren X, Yin F (2008) Twofold role of dislocations in the relaxation behavior of Ti–Ni martensite. Acta Mater 56:632–641

    Article  Google Scholar 

  28. Soubeyroux JL, Fruchart D, Lorthioir G, Ochin P, Colin D (1993) Structural study of the hydrides NiTiHx (x = 1.0 and 1.4). J Alloys Compd 196:127–132

    Article  Google Scholar 

  29. Runciman A, Chen KC, Pelton AR, Trépanier C (2006) Effects of hydrogen on the phases and transition temperatures of NiTi. In: Mitchell MR, Proft J, Berg B (eds) Proceedings of the international conference on shape memory and superelastic technologies May 7–11, Pacific Grove. ASM International, pp 185–196 (2006)

  30. Pelton A, Trépanier C, Gong XY, Wick A, Chen KC (2003) Structural and diffusional effects of hydrogen in TiNi. In: Duerig TW, Pelton A (eds) Proceedings of SMST-2003 monterey

  31. Sheriff J, Pelton AR, Pruitt LA (2005): Hydrogen Effects on Nitinol Fatigue. In: Helmus M Medlin D (eds) Proceedings of ASM materials & processes for medical devices conference. pp 38–43

  32. ASTM F2004-05 (Reapproved 2010) Standard test method for transformation temperature of nickel–titanium alloys by thermal analysis

  33. Schmidt R, Schlereth M, Wipf H, Assmus W, Mullner M (1989) Hydrogen solubility and diffusion in the shape-memory alloy NiTi. J Phys Condens Matter 1:2473–2482

    Article  Google Scholar 

  34. Gamaoun F, Hassine T (2014) Ageing effect and rate dependency of a NiTi shape memory alloy after hydrogen charging. J Alloys Compd 615:680–683

    Article  Google Scholar 

  35. Zeng ZY, Hu CE, Caia LC, Chen XR, Jing FQ (2010) First-principles determination of the structure, elastic constant, phase diagram and thermodynamics of NiTi alloy. Phys B Condens Matter 405:3665–3672

    Article  Google Scholar 

  36. Gamaoun F, Skhiri I, Bouraoui T, Ben Zineb T (2014) Hydrogen effect on the austenite–martensite transformation of the cycled Ni–Ti alloy. J Intell Mater Syst Struct 25:980–988

    Article  Google Scholar 

  37. Racek J, Stora M, Sittner P, Heller L, Kopecek J, Petrenec M (2015) Monitoring tensile fatigue of superelastic NiTi wire in liquids by electrochemical potential. Shape Mem Superelast 1:204–230

    Article  Google Scholar 

  38. Grazulis S, Chateigner D, Downs RT, Yokochi AT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography Open Database—an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  Google Scholar 

  39. Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCR 21:14–15

    Google Scholar 

  40. Hammersley AP (1997) FIT2D: an introduction and overview. In: European Synchrotron Radiation Facility Internal Report ESRF97HA02T68, 58

  41. Young ML, Almer JD, Lienert U, Daymond MR, Haeffner DR, Dunand DC (2007) Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel. Acta Mater 55:1999–2011

    Article  Google Scholar 

  42. Frenzel J, George EP, Dlouhy A, Somsen Ch, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458

    Article  Google Scholar 

  43. Urch R, Mason N (1978) Absorption of hydrogen by titanium–cobalt and titanium–nickel intermetallic alloys, part 1—experimental results. J Chem Soc Faraday Trans Phys Chem Condens Phases 1:561–577

    Google Scholar 

  44. Ahadi A, Rezaei E (2012) Microstructure and phase transformation behavior of a stress-assisted heat-treated Ti-rich NiTi shape memory alloy. J Mater Eng Perform 21:1806–1812

    Article  Google Scholar 

  45. Paula AS, Mahesh KK, Braz-Fernandes FM (2011) Stability in phase transformation after multiple steps of marforming in Ti-rich Ni–Ti shape memory alloy. J Mater Eng Perform 20:771–775

    Article  Google Scholar 

  46. Nam TH, Kim JH, Choi MS, Lee HW, Kim YW, Im HJ, Ahn JS, Mitani T (2002) Effect of alloy compositions on the R phase transformation in Ti–Ni alloy ribbons fabricated by rapid solidification. J Mater Sci Lett 21:799–801

    Article  Google Scholar 

  47. Liu Y, Blanc M, Tan G, Kim JI, Miyazaki S (2006) Effect of ageing on the transformation behaviour of Ti–49.5 at.% Ni. Mater Sci Eng, A 438:617–621

    Article  Google Scholar 

  48. Murguia SB, Clauser A, Dunn H, Grogg W, Fisher W, Mello L, Snir Y, Brennan R, Young ML (2017) Low pressure hydriding-pulverization-dehydriding method of preparing shape memory alloy powders. In: International conference on martensitic transformation (ICOMAT), Chicago. 07.10.2017 presentation

  49. Kang DB (2006) The bonding of interstitial hydrogen in the NiTi intermetallic compound. Bull Korean Chem Soc 27:2045–2050

    Article  Google Scholar 

  50. Moitra A, Solanki KN, Horstemeyer MF (2011) The location of atomic hydrogen in NiTi alloy: a first principles study. Comput Mater Sci 50:820–823

    Article  Google Scholar 

  51. Holec D, Friák M, Dlouhý A, Neugebauer J (2014) Ab initio study of point defects in NiTi-based alloys. Phys Rev B 89:014110

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jeff Brown (Dynalloy, Inc.) for supplying Flexinol® wire. YS acknowledges the financial support from the NRCN during his sabbatical. This research used the resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under the Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus L. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snir, Y., Carl, M., Ley, N.A. et al. Effects of Hydrogen Charging on the Phase Transformation of Martensitic NiTi Shape Memory Alloy Wires. Shap. Mem. Superelasticity 3, 443–456 (2017). https://doi.org/10.1007/s40830-017-0127-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-017-0127-y

Keywords

Navigation