Skip to main content

Advertisement

Log in

Influence from Size and Morphology of Mn5Si3 on Wear Resistance of Cu-Zn-Al-Mn-Si Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the microstructure, hardness, and wear resistance of two kinds of copper alloy are demonstrated to be affected by both composition, annealing temperature, and phases present with a sliding block-on-ring test, where the ring is 316 stainless steel. With a higher content of Zn, the solubility of Mn and Si would decrease, resulting in increased volume fraction of the hard ω-Mn5Si3 phase (with a high nanoindentation hardness of 12.9 GPa). Moreover, the higher contents of Mn and Si lead to the formation of large primary polyhedron Pω-Mn5Si3 cylinders during solidification. With the help of two-stage forging, the primary polyhedron Pω-Mn5Si3 grow along [0001], enabling the large primary Mn5Si3 cylinders all parallel to each other. This special microstructure could significantly improve the wear resistance in comparison with the samples with a microstructure containing only small and randomly oriented precipitates. Such parallel primary polyhedron Pω-Mn5Si3 cylinders can act as reinforcements to grab the matrix, effectively improving the wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.A. Jones, Principles and Prevention of Corrosion, Macmillan, New York, 1992.

    Google Scholar 

  2. J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders, S.B. Warner, The Science and Design of Engineering Materials, McGraw-Hill, New York, 1999.

    Google Scholar 

  3. W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York, 1981.

    Google Scholar 

  4. W. Chen, Y.L. Jia, J. Yi, M.P. Wang, B. Derby, Q. Lei, J. Mater. Res., 2017, vol. 32, pp. 3137-3145.

    Article  Google Scholar 

  5. M.Q. Gao, Z.N. Chen, H.J. Kang, R.G. Li, W. Wang, C.L. Zou, T.M. Wang, Mater. Sci. Eng. A, 2018, vol. 715, pp. 340-347.

    Article  Google Scholar 

  6. S.E. Mousavi, M. Meratian, A. Rezaeian, J. Mater. Sci., 2017, vol. 52, pp. 8041-8051.

    Article  Google Scholar 

  7. H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio, Mater. Sci. Eng. A, 2004, vol. 371, pp. 160-169.

    Article  Google Scholar 

  8. T.B. Massalski, C.S. Barrett, JOM, 1957, vol. 9, pp. 455-461.

    Article  Google Scholar 

  9. Y.S. Sun, G.W. Lorimer, N. Ridley, Metall. Mater. Trans. A, 1989, vol. 20, pp. 1199-1206.

    Article  Google Scholar 

  10. H. Li, J.C. Jie, P.C. Zhang, C.X. Jia, T.M. Wang, T.J. Li, Metall. Mater. Trans. A, 2016, vol. 47, pp. 2616-2624.

    Article  Google Scholar 

  11. X.R. Chen, J. Xu, H. Hu, H. Mohrbacher, M. Kang, W. Zhang, A.M. Guo, Q.J. Zhai, Mater. Sci. Eng. A, 2017, vol. 688, pp. 416-128.

    Google Scholar 

  12. H. Mindivan, H. Çimenoğlu, E.S. Kayali, Wear, 2003, vol. 254, pp. 532-537.

    Article  Google Scholar 

  13. F. Khodabakhshi, A. Simchi, A.H. Kokabi, Surf. Coat. Technol., 2017, vol. 309, pp. 114-123.

    Article  Google Scholar 

  14. K. Yang, Y. Gao, K. Yang, Y.F. Bao, Y.F. Jiang, Wear, 2017, vol. 376, pp. 1091-1096.

    Article  Google Scholar 

  15. J.J. Li, X.G. Yan, X.Y. Liang, H. Guo, D.Y. Li, Wear, 2017, vol. 376, pp. 1112-1121.

    Article  Google Scholar 

  16. S.A. Mantri, T. Torgerson, E. Ivanov, T.W. Scharf, R. Banerjee, Metall. Mater. Trans. A, 2018, vol. 49, pp. 806-810.

    Article  Google Scholar 

  17. V. Johnson, J.F. Weiher, C.G. Frederick, D.B. Rogers, J. Solid State Chem., 1972, vol. 4, pp. 311-323.

    Article  Google Scholar 

  18. H. Li, J.C. Jie, Q.Y. Zhang, T.J. Li, J. Mater. Res., 2016, vol. 31, pp. 1491-1500.

    Article  Google Scholar 

  19. A. Chiba, K. Kumagai, N. Nomura, S. Miyakawa, Acta Mater., 2007, vol. 55, pp. 1309-1318.

    Article  Google Scholar 

  20. F.X. Li, J.H. Yi, J. Eckert, Metall. Mater. Trans. A, 2017, vol. 48, pp. 6027-6037.

    Article  Google Scholar 

  21. T. Lyman, Metals handbook: Forging and Casting, American Society for Metals, Cleveland, 1970.

    Google Scholar 

  22. S.M. Kurtz, R.A. Gsell, J. Martell, ASTM International, West Conshohocken, 2004.

  23. Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang, Mater. Sci. Eng. A, 2005, vol. 392, pp. 130-135.

    Article  Google Scholar 

  24. B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.H. Yegneswaran, J. Mater. Sci. Lett., 1996, vol. 15, pp. 1773-1776.

    Article  Google Scholar 

  25. M. Cetin, Technology, 2009, vol. 12, pp. 227-233.

    Google Scholar 

  26. M. Çetin, High Temp. Mater. Processes, 2011, vol. 30, pp. 87-98.

    Article  Google Scholar 

  27. M. Sundberg, R. Sundberg, S. Hogmark, R. Otterberg, B. Lehtinen, S.E. Hörnström, S.E. Karlsson, Wear, 1987, vol. 115, pp. 151-165.

    Article  Google Scholar 

  28. U. Borggren, M. Selleby, J. Phase Equilib., 2003, vol. 24, pp. 110-121.

    Article  Google Scholar 

  29. P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International Materials Park, OH, 1995.

    Google Scholar 

  30. H. Li, J.C. Jie, S.C. Liu, Y.B. Zhang, T.J. Li, Mater. Sci. Eng. A, 2017, vol. 704, pp. 45-56.

    Article  Google Scholar 

  31. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1976.

    Google Scholar 

  32. R.W. Hertzberg, Defomation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1989.

    Google Scholar 

  33. J.T. Busby, M.C. Hash, G.S. Was, J. Nucl. Mater., 2005, vol. 336, pp. 267-278.

    Article  Google Scholar 

  34. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Wear, 2006, vol. 261, pp. 513-519.

    Article  Google Scholar 

  35. R. Ipek, J. Mater. Process. Technol., 2005, vol. 162, pp. 71-75.

    Article  Google Scholar 

  36. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  37. A. Sackfield, D. Hills, J. Strain. Anal., 1983, vol. 18, pp. 107-110.

    Article  Google Scholar 

  38. A. Sackfield, D. Hills, J. Strain. Anal., 1983, vol. 18, pp. 195-197.

    Article  Google Scholar 

  39. F. Sadeghi, B. Jalalahmadi, T.S. Slack, N. Raje, N.K. Arakere, J. Tribol., 2009, vol. 131, pp. 041403.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the sponsorship from Ministry of Science and Technology of Taiwan, ROC, under the project No. MOST 105-2221-E-110-019-MY3, and from City University of Hong Kong under the Grant Nos. 9380088 and 7005078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 13, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.H., Chuang, W.S., Huang, J.C. et al. Influence from Size and Morphology of Mn5Si3 on Wear Resistance of Cu-Zn-Al-Mn-Si Alloys. Metall Mater Trans A 50, 3148–3157 (2019). https://doi.org/10.1007/s11661-019-05255-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05255-4

Navigation