Skip to main content

Advertisement

Log in

Investigation into the Extrudability of a New Mg-Al-Zn-RE Alloy with Large Amounts of Alloying Elements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study was aimed at determining the extrudability of a newly developed Mg-Al-Zn-RE magnesium alloy with large amounts of alloying elements. The experimental and numerical investigation clearly showed that the extrudate temperature was a crucial factor in deciding if a critical temperature between 754 K and 768 K (481 °C and 495 °C) was reached during extrusion, above which hot shortness occurred. Under the extrusion conditions applied, dynamic recrystallization (DRX) occurred, leading to grain refinement from a mean grain size of 165 μm in the as-solid-solution-treated billet to 8.0 to 10.9 μm in the extruded rods. Second-phase particles, such as Mg17Al12 and Al11La3, were found to distribute on grain boundaries and aid in grain refinement. The mechanical properties of the extrudate were greatly influenced by the as-extruded microstructure and extrusion condition. As the initial billet temperature decreased, the ultimate tensile strength (UTS) and elongation of the alloy increased, while yield strength (YS) remained almost unchanged. At an initial billet temperature of 523 K (250 °C), a stem speed of 3.93 mm/s, and a reduction ratio of 29.8, the extruded magnesium alloy had a mean grain size of 8 μm. Its YS, UTS, and elongation reached 217 ± 3 MPa, 397 ± 7 MPa, and 20 ± 1.3 pct, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M.K. Kulekci: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–65.

    Article  Google Scholar 

  2. A.A. Luo: Int. Mater. Rev., 2004, vol. 49, pp. 13–30.

    Article  Google Scholar 

  3. E.F. Volkova: Met. Sci. Heat Treatment, 2006, vol. 48, pp. 473–78

    Article  Google Scholar 

  4. S. Yao and Y.F. Li: Sci. Total Environ., 2015, vol. 44, pp. 89–96.

    Google Scholar 

  5. H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, and G. Qin: J. Alloys Compds., 2016, vol. 663, pp. 321–31.

    Article  Google Scholar 

  6. D. Letzig, J. Swiostek, J. Bohlen, P. A. Beaven, and K.U. Kainer: Met. Sci. J., 2013, vol. 24, pp. 991–96.

    Google Scholar 

  7. A.A. Luo: J. Magn. Alloys, 2013, vol. 1, pp. 2–22.

    Article  Google Scholar 

  8. W.A. Monteiro, S.J. Buso, and L.V. da Silva: in New Features on Magnesium Alloys, W.A. Monteiro, ed., InTech, Rijeka, 2012, pp. 1–14.

  9. S. You, Y. Huang, K.U. Kainer, and N. Hort: J. Magn. Alloys, 2017, vol. 5, pp. 239–53.

    Article  Google Scholar 

  10. Z. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis: Int. Mater. Rev., 2018, vol. 2, pp. 1–36.

    Google Scholar 

  11. C. Bettles and M. Barnett: Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Woodhead Publishing, Philadelphia, PA, 2012, pp. 304–22.

    Book  Google Scholar 

  12. D.S. Yin, E.L. Zhang, and S.Y. Zeng: Trans. Nonferr. Met. Soc., 2008, vol. 18, pp. 763–68.

    Article  Google Scholar 

  13. W.N. Tang, S.S. Park, and B.S. You: Mater. Des., 2011, vol. 32, pp. 3537–43.

    Article  Google Scholar 

  14. S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng. A, 2009, vol. 526, pp. 22–30.

    Article  Google Scholar 

  15. B. Zhang, Y. Wang, L. Geng, and C. Lu: Mater. Sci. Eng. A, 2012, vol. 539, pp. 56–60.

    Article  Google Scholar 

  16. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7092–98.

    Article  Google Scholar 

  17. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compds., 2007, vol. 432, pp. 129–34.

    Article  Google Scholar 

  18. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compds., 2006, vol. 426, pp. 155–61.

    Article  Google Scholar 

  19. N. Stanford and M.R. Barnett: Mater. Sci. Eng. A, 2008, vol. 496, pp. 399–408.

    Article  Google Scholar 

  20. M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646–58.

    Article  Google Scholar 

  21. X. Li, W. Qi, K. Zheng, and N. Zhou: J. Magn. Alloys, 2013, vol. 1, pp. 54–63.

    Article  Google Scholar 

  22. X. Zeng, Y. Zhang, C. Lu, W. Ding, Y. Wang, and Y. Zhu: J. Alloys Compds., 2005, vol. 395, pp. 213–19.

    Article  Google Scholar 

  23. N. Stanford, D. Atwell, and M.R. Barnett: Acta Mater., 2010, vol. 58, pp. 6773–83.

    Article  Google Scholar 

  24. J.B. Zhang, L.B. Tong, C. Xu, Z.H. Jiang, L.R. Cheng, S. Kamado, and H.J. Zhang: Mater. Sci. Eng. A, 2017, vol. 708, pp. 11–20.

    Article  Google Scholar 

  25. T. Homma, N. Kunito, and S. Kamado: Scripta Mater., 2009, vol. 61, pp. 644–47.

    Article  Google Scholar 

  26. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura: Scripta Mater., 2005, vol. 53, pp. 799–803.

    Article  Google Scholar 

  27. Y. Chen, L. Hao, Y. Ruiyu, G. Liu, and T. Xia: Mater. Sci. Technol., 2014, vol. 30, pp. 495–500.

    Article  Google Scholar 

  28. A.A. Luo, C. Zhang, and A.K. Sachdev: Scripta Mater., 2012, vol. 66, pp. 491–94.

    Article  Google Scholar 

  29. T. Murai, S.I. Matsuoka, S. Miyamoto, and Y. Oki: J. Mater. Process. Technol., 2001, vol. 141, pp. 207–12.

    Article  Google Scholar 

  30. S. Ishihara, H. Shibata, K. Komano, T. Goshima, and Z.Y. Nan: Key Eng. Mater., 2007, vol. 353, pp. 291–94.

    Article  Google Scholar 

  31. B.P. Zhang, L. Geng, L.J. Huang, X.X Zhang, and C.C. Dong: Scripta Mater., 2010, vol. 63, pp. 1024–27.

    Article  Google Scholar 

  32. L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, and H.J. Zhang: Mater. Charact., 2015, vol. 104, pp. 66–72.

    Article  Google Scholar 

  33. S.H. Park, J.G. Jung, Y.M. Kim, and B.S. You: Mater. Lett., 2015, vol. 139, pp. 35–38.

    Article  Google Scholar 

  34. M. Shahzad and L. Wagner: Mater. Sci. Eng. A, 2009, vol. 506, pp. 141–47.

    Article  Google Scholar 

  35. Q. Chen, D. Shu, Z. Zhao, Z. Zhao, Y. Wang, and B. Yuan: Mater. Des., 2012, vol. 40, pp. 488–96.

    Article  Google Scholar 

  36. A. Singh, Y. Osawa, and H. Somekawa: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3232–40.

    Article  Google Scholar 

  37. S.H. Park, J.H. Bae, S.H. Kim, J. Yoon, and B.S. You: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5482–88.

    Article  Google Scholar 

  38. F. Bu, Q. Yang, K. Guan, X. Qiu, D. Zhang, and W. Sun: J. Alloys Compds., 2016, vol. 688, pp. 1241–50.

    Article  Google Scholar 

  39. X. Luo, S. Dang, and L. Kang: Adv. Mater. Sci. Eng., 2014, vol. 2014, pp. 1–7.

    Google Scholar 

  40. J. Mohammadi, M. Ghoreishi, and Y. Behnamian: Mater. Res., 2014, vol. 17, pp. 994–1002.

    Article  Google Scholar 

  41. C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38

    Article  Google Scholar 

  42. L. Li, H. Zhang, J. Zhou, J. Duszczyk, G. Li, and Z.H. Zhong: Mater. Des., 2008, vol. 29, pp. 1190–98.

    Article  Google Scholar 

  43. G. Liu, J. Zhou, and J. Duszczyk: J. Mater. Process. Technol., 2008, vol. 200, pp. 185–98.

    Article  Google Scholar 

  44. L. Li, J. Zhou, and J. Duszczyk: J. Mater. Process. Technol., 2006, vol. 172, pp. 372–80.

    Article  Google Scholar 

  45. J. Zhou, L. Li, and J. Duszczyk: J. Mater. Process. Technol., 2003, vol. 134, pp. 383–97.

    Article  Google Scholar 

  46. T. Sheppard: Extrusion of Aluminum Alloys, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 227–52.

    Book  Google Scholar 

  47. M.P. Clade and T. Sheppard: Mater. Sci. Technol., 1993, vol. 9, pp. 313–18.

    Article  Google Scholar 

  48. W. Wei, C. Xu, J. Zhang, and X. Niu: China Foundry, 2014, vol. 11, pp. 157–62.

    Google Scholar 

  49. Y.S. Yang, J.C. Wang, T. Wang, C.M. Liu, and Z.M. Zhang: Trans. Nonferr. Met. Soc., 2014, vol. 24, pp. 76–81.

    Article  Google Scholar 

  50. N. Jiang, L.G. Meng, X.G. Zhang, L. Chen, C.F. Fang, and H. Hao: Rare Met., 2017. https://doi.org/10.1007/s12598-016-0868-3.

    Google Scholar 

  51. X.D. Wang, W.B. Du, K. Liu, Z.H. Wang, and S.B. Li: J. Alloys Compds., 2012, vol. 522, pp. 78–84.

    Article  Google Scholar 

  52. J.C. Wurst and J.A. Nelson: J. Am. Ceram. Soc., 1972, vol. 55, pp. 109–09.

    Article  Google Scholar 

  53. H. Ding, L. Liu, S. Kamado, D. Wang, and Y. Kojima: J. Alloys Compds., 2008, vol. 456, pp. 400–06.

    Article  Google Scholar 

  54. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi: Mater. Sci. Eng. A, 2007, vol. 456, pp. 52–57.

    Article  Google Scholar 

  55. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi: Mater. Sci. Eng. A, 2007, vol. 456, pp. 52–57.

    Article  Google Scholar 

  56. O. Sitdikov and R. Kaibyshev: Mater. Trans., 2001, vol. 42, pp. 1928–37.

    Article  Google Scholar 

  57. A.G. Beer and M.R. Barnett: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1856–67.

    Article  Google Scholar 

  58. L. Wang, G. Fang, and L. Qian: Mater. Sci. Eng. A, 2018, vol. 711, pp. 268–83.

    Article  Google Scholar 

  59. J.D. Robson, D.T. Henry, and B. Davis: Acta Mater., 2009, vol. 57, pp. 2739–47.

    Article  Google Scholar 

  60. K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, and W.M. Gan: Mater. Sci. Eng. A, 2012, vol. 543, pp. 158–63.

    Article  Google Scholar 

  61. Q. Liao, X. Chen, Q. Lan, F. Ning, and Q. Le: Mater. Res. Express, 2018, vol. 5, pp. 1–10.

    Google Scholar 

  62. D.C. Foley, M. Al-Maharbi, K.T. Hartwig, I. Karaman, L.J. Kecskes, and S.N. Mathaudhu: Scripta Mater., 2011, vol. 64, pp. 193–96.

    Article  Google Scholar 

  63. S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, and V.H. Hammond: Scripta Mater., 2012, vol. 67, pp. 439–42.

    Article  Google Scholar 

  64. K. Cai, Z. Gao, Q. Zhu, Y. Jin, Y. Chai, and D. Fang: Rare Metal Mater. Eng., 2015, vol. 44, pp. 1489–93.

    Google Scholar 

  65. Q. Zhu, C. Fang, N. Li, L. Meng, Y. Wang, Y. Wu, and X. Zhang: Rare Metal Mater. Eng., 2013, vol. 42, pp. 771–75.

    Google Scholar 

  66. C. Che, Z. Cai, X. Yang, L. Cheng, and Y. Du: Mater. Sci. Eng. A, 2017, vol. 705, pp. 282–90.

    Article  Google Scholar 

  67. L. Fu, X.B. Wang, P.L. Gou, Q.C. Le, W. T. Jia, and Y. Tang: Adv. Eng. Mater., 2017, vol. 19, pp. 1700230.

    Article  Google Scholar 

  68. A.A. Luo, W. Wu, R.K. Mishra, L. Jin, A.K. Sachdev, and W. Ding: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2662–74.

    Article  Google Scholar 

  69. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs: JOM, 2008, vol. 60, pp. 57–62.

    Article  Google Scholar 

  70. H. Borkar, M. Hoseini, and M. Pekguleryuz: Mater. Sci. Eng. A, 2012, vol. 549, pp. 168–75.

    Article  Google Scholar 

Download references

Acknowledgment

Two of the authors (GF and SWB) greatly appreciate the financial support of the National Natural Science Foundation of China (Project No. 51675300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, SW., Fang, G. & Zhou, J. Investigation into the Extrudability of a New Mg-Al-Zn-RE Alloy with Large Amounts of Alloying Elements. Metall Mater Trans A 50, 3246–3264 (2019). https://doi.org/10.1007/s11661-019-05242-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05242-9

Navigation