Skip to main content
Log in

Effect of Annealing Temperature on Microstructure and Mechanical Properties of a Severe Cold-Rolled FeCoCrNiMn High-Entropy Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An ultrafine-structured FeCoCrNiMn high-entropy alloy (HEA) was produced by severe cold rolling (SCR) with a 95 pct reduction, and the effect of annealing temperature over a wide range from 573 K to 1373 K (300 °C to 1100 °C) on the microstructure and mechanical properties of this SCRed HEA was systematically investigated. The results show that the microstructure of the single-phase FCC HEA after SCR is greatly refined and mainly comprises ultrafine crystalline, high-density dislocation cell and networks, which substantially improve the hardness and strength. The SCRed HEA starts to recrystallize at an annealing temperature of 773 K (500 °C) and is fully recrystallized at 973 K (700 °C) after 1 hours. The σ phases with a tetragonal structure form upon annealing at 773 K (500 °C), leading to a further enhancement in hardness and strength for the annealed HEA compared to the SCRed HEA. The average grain size remains below 500 nm when the SCRed HEA is annealed at 923 K (650 °C) for 1 hours, indicating that the ultrafine-structured HEA after SCR and subsequent annealing treatment possesses excellent microstructural thermal stability. The SCRed HEAs annealed at 923 K and 973 K (650 °C and 700 °C) exhibit excellent high strength–ductility combinations due to the formation of the fully recrystallized ultrafine-grained microstructure. The strain-rate sensitivity parameter (m value) with different grain sizes, from ultrafine to coarse, was evaluated by strain-rate jump tests. The m value of the HEA increases monotonically with increasing grain size and annealing temperature. Moreover, high-temperature tensile tests demonstrated that the annealed HEAs exhibit superplastic deformation behavior at 973 K and 1073 K (700 °C and 800 °C), and the formation of a Cr-rich phase is found during high-temperature deformation. It is believed that the plastic deformation facilitates the phase decomposition of fine-grained HEAs and grain boundary sliding is the key mechanism of high-temperature deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 213-218.

    Article  Google Scholar 

  2. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    Article  Google Scholar 

  3. Z. P. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Liu and T. G. Nieh: Intermetallics, 2015, vol. 66, pp. 67-76.

    Article  Google Scholar 

  4. J.W.Yeh: Ann. Chim. Sci. Mat., 2006, vol. 31, pp. 633-648.

    Article  Google Scholar 

  5. S. Maiti and W.Steurer: Acta Mater., 2016, vol. 106, pp. 87-97.

    Article  Google Scholar 

  6. A. Gali and E. P. George: Intermetallics, 2013, vol. 39, pp. 74-78.

    Article  Google Scholar 

  7. D.Y. Li and Y. Zhang: Intermetallics, 2016, vol. 70, pp. 24-28.

    Article  Google Scholar 

  8. C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun: Metall. Trans. A, 2004, vol. 35A, pp. 1465-69.

    Article  Google Scholar 

  9. Y. Liu, S. Ma, M. C. Gao, C. Zhang, T. Zhang, H.Yang, Z. Wang, and J. Qiao: Metall. Trans. A, 2016, vol. 47, pp. 3312-3321.

    Article  Google Scholar 

  10. Y. Shi, B. Yang, X. Xie, J. Brechtl, K. A. Dahmen, and P. K. Liaw: Corros. Sci., 2017, vol. 119, pp. 33-45.

    Article  Google Scholar 

  11. V. Soare, D. Mitrica, I. Constantin, G. Popescu, I. Csaki, M. Tarcolea, and I. Carcea: Metall. Trans. A, 2014, vol. 46, pp. 1468- 1473.

    Article  Google Scholar 

  12. W. Zhang, P. K. Liaw and Y. Zhang: Sci. China Mater., 2018, vol. 61, pp. 2-22.

    Article  Google Scholar 

  13. D. B. Miracle and O. N. Senkov: Acta Mater., 2017, vol. 122, pp. 448-511.

    Article  Google Scholar 

  14. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George: Acta Mater., 2013, vol. 61, pp. 5743-5755.

    Article  Google Scholar 

  15. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie: Science, 2014, vol. 345, pp. 1153-8.

    Article  Google Scholar 

  16. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T. G. Langdon: Mater. Sci. Eng. A, 2016, vol. 676, pp. 294-303.

    Article  Google Scholar 

  17. Z. Li, L. Fu, B. Fu, and A. Shan: Mater. Sci. Eng. A, 2012, vol. 558, pp. 309-318.

    Article  Google Scholar 

  18. R.Z. Valiev: Nat. Mater., 2004, vol.3, pp. 511-516.

    Article  Google Scholar 

  19. A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida: Cirp Ann - Manuf Techn., 2008, vol. 57, pp. 716-735.

    Article  Google Scholar 

  20. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  21. R.K. Islamgaliev, R.Z. Valiev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-189.

    Article  Google Scholar 

  22. B. Schuh, F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan and A. Ohenwarter: Acta Mater., 2015, vol. 96, pp. 258-68.

    Article  Google Scholar 

  23. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, and T. G. Langdon, Mater. Sci. Eng. A, 2017, vol. 705, pp. 411-419.

    Article  Google Scholar 

  24. G. D. Sathiaraj, P. P. Bhattacharjee, C.-W. Tsai, and J.-W. Yeh: Intermetallics, 2016, vol. 69, pp. 1-9.

    Article  Google Scholar 

  25. G. D. Sathiaraj, M. Z. Ahmed, and P. P. Bhattacharjee: J. Alloys Compd., 2016, vol. 664, pp. 109-119.

    Article  Google Scholar 

  26. Z. Wu, H. Bei, F. Otto, G. M. Pharr, and E. P. George: Intermetallics, 2014, vol. 46, pp. 131-140.

    Article  Google Scholar 

  27. W. Zhou, L. M. Fu, P. Liu, X. D. Xu, B. Chen, G. Z. Zhu, X. D. Wang, A. D. Shan, and M. W. Chen: Intermetallics, 2017, vol. 85, pp. 90-97.

    Article  Google Scholar 

  28. G. D. Sathiaraj, C. Lee, C. W. Tsai, J. W. Yeh, and P. P. Bhattacharjee: IOP Conf. Ser., 2015, vol. 82, p. 012068.

    Article  Google Scholar 

  29. P. P. Bhattacharjee, G. D. Sathiaraj, M. Zaid, J. R. Gatti, C. Lee, C.-W. Tsai, and J.-W. Yeh: J. Alloys Compd., 2014, vol. 587, pp. 544-552.

    Article  Google Scholar 

  30. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E. P. George: J. Alloys Compd., 2015, vol. 623, pp. 348-353.

    Article  Google Scholar 

  31. G. D. Sathiaraj and P. P. Bhattacharjee: J. Alloys Compd., 2015, vol. 647, pp. 82-96.

    Article  Google Scholar 

  32. M. Komarasamy, N. Kumar, Z. Tang, R. S. Mishra, and P. K. Liaw: Mater. Res. Lett., 2014, vol. 3, pp. 30-34.

    Article  Google Scholar 

  33. I. S. Wani, T. Bhattacharjee, S. Sheikh, Y. P. Lu, S. Chatterjee, P. P. Bhattacharjee, S. Guo, and N. Tsuji: Mater. Res. Lett., 2016, vol. 4, pp. 174-179.

    Article  Google Scholar 

  34. N. D. Stepanov, D. G. Shaysultanov, M. S. Ozerov, S. V. Zherebtsov, and G. A. Salishchev: Mater. Lett., 2016, vol. 185, pp. 1-4.

    Article  Google Scholar 

  35. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, and G. Salishchev: Intermetallics, 2015, vol. 59, pp. 8-17.

    Article  Google Scholar 

  36. N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P. K. Liaw, and N. Tsuji: Metall. Trans. A, 2014, vol. 46, pp. 1481-1487.

    Article  Google Scholar 

  37. S. J. Sun, Y. Z. Tian, H. R. Lin, X. G. Dong, Y. H. Wang, Z. J. Zhang, and Z. F. Zhang: Mater. Des., 2017, vol. 133, pp. 122-127.

    Article  Google Scholar 

  38. T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777-781.

    Article  Google Scholar 

  39. A. Stukowski, J. Markmann, J. Weissmüller, and K. Albe: Acta Mater., 2009, vol. 57, pp. 1648-1654.

    Article  Google Scholar 

  40. G. D. Sathiaraj and P. P. Bhattacharjee: Mater. Charact., 2015, vol. 109, pp. 189-197.

    Article  Google Scholar 

  41. F. Otto, A. Dlouhý, K. G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler and E. P. George: Acta Mater., 2016, vol. 112, pp. 40-52.

    Article  Google Scholar 

  42. E. J. Pickering, R. Muñoz-Moreno, H. J. Stone and N. G. Jones: Scr. Mater., 2016, vol. 113, pp. 106-109.

    Article  Google Scholar 

  43. Y. Sun, S. Xu, and A. Shan: Mater. Sci. Eng. A, 2015, vol. 641, pp. 181-188.

    Article  Google Scholar 

  44. Y.  H Zhao, X.  Z Liao, S. Cheng, E. Ma, and Y.  T Zhu: Adv Mater., 2006, vol. 18, pp. 2280-2283.

    Article  Google Scholar 

  45. R. Valiev,A.V.Sergueeva, and A.K.Mukherjee: Scr. Mater., 2003, vol. 49, pp. 669-674.

    Article  Google Scholar 

  46. W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, and Z. P. Lu: Scr. Mater., 2013, vol. 68, pp. 526-529.

    Article  Google Scholar 

  47. A. R. Kalidindi, T. Chookajorn and C. A. Schuh: Jom, 2015, vol. 67, pp. 2834-2843.

    Article  Google Scholar 

  48. C.E.Krill, A.Michels, H.Ehrhardt,R.Birringer and D.T.Wu: Adv Mater., 1999, vol. 47, pp. 2143-2152.

    Google Scholar 

  49. N. Zhou, T. Hu, J. Huang and J. Luo: Scr. Mater., 2016, vol. 124, pp. 160-163.

    Article  Google Scholar 

  50. N. Zhou, T. Hu, and J. Luo: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 268-277.

    Article  Google Scholar 

  51. P.-K. Huang and J.-W. Yeh: Scr. Mater., 2010, vol. 62, pp. 105-108.

    Article  Google Scholar 

  52. K. Y. Tsai, M. H. Tsai, and J. W. Yeh: Acta. Mater., 2013, vol. 61, pp. 4887-4897.

    Article  Google Scholar 

  53. J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, and J.-W. Yeh: J. Alloys Compd., 2016, vol. 674, pp. 455-462.

    Article  Google Scholar 

  54. J.Kallqvist, M.Schwind, J.O.Nilsson,J.Agren,and H.O.Andren: Acta.Mater.,2000, vol. 48, pp. 24773-2481.

    Google Scholar 

  55. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner: Calphad, 2014, vol. 45, pp. 1-10.

    Article  Google Scholar 

  56. F. Otto, Y. Yang, H. Bei and E. P. George: Acta Mater.,2013, vol. 61, pp. 2628-2638.

    Article  Google Scholar 

  57. F.J.Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Kidlington, Oxford OX5 1GB, UK, 2004, pp. 169–72.

  58. I.T Caraballo and P. E. Castillo: Acta Mater., 2015, vol. 85, pp. 14-23.

    Article  Google Scholar 

  59. Q. Wei, S. Cheng, K. T. Ramesh, and E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, pp. 71-79.

    Article  Google Scholar 

  60. S. Gangireddy, L. Kaimiao, B. Gwalani and R. S.Mishra: Mater. Sci. Eng. A, 2018, vol. 727, pp. 148-159.

    Article  Google Scholar 

  61. S. Gangireddy, B. Gwalani, K. Liu, R. Banerjee and R. S. Mishra: Mater. Sci. Eng. A, 2018, vol. 734, pp. 42-50.

    Article  Google Scholar 

  62. S. Gangireddy, B. Gwalani and R. S. Mishra: Mater. Sci. Eng. A, 2018, vol. 736, pp. 344-348.

    Article  Google Scholar 

  63. G. Laplanche, A. Kostka, O. M. Horst, G. Eggeler and E. P. George, Acta Mater., 2016, vol. 118, pp. 152-163.

    Article  Google Scholar 

  64. M.Furukawa, Z.Horita, M.Nemoto, A.J.Barenes and T.G.Langdon, Acta Mater., 2000, vol. 48, pp. 3633-3640.

    Article  Google Scholar 

  65. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T. G. Langdon: Mater. Sci. Eng. A, 2017, vol. 685, pp. 342-348.

    Article  Google Scholar 

  66. D. G. Shaysultanov, N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev and O. N. Senkov: Jom, 2013, vol. 65, pp. 1815-1828.

    Article  Google Scholar 

  67. J-W. Qiao, Y. Zhang and P. K. Liaw: J. Iron. Steel. Res. Int., 2016, vol. 23, pp. 2-6.

    Article  Google Scholar 

  68. R. Carroll, C. Lee, C. W. Tsai, J. W. Yeh, J. Antonaglia, B. A. Brinkman, M. LeBlanc, X. Xie, S. Chen, P. K. Liaw and K. A. Dahmen, Sci. rep., 2015, vol. 5, p. 16997.

    Article  Google Scholar 

  69. Z. Li, L.Zhang, N. Sun, L. Fu and A. Shan:Mater. Lett., 2015, vol. 150, pp. 108-110.

    Article  Google Scholar 

  70. Y. Zhang, J. P. Liu, S. Y. Chen, X. Xie, P. K. Liaw, K. A. Dahmen, J. W. Qiao and Y. L. Wang: Pro. Mater. Sci., 2017, vol. 90, pp. 358-460.

    Article  Google Scholar 

  71. J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh and Z. P. Lu: Intermetallics, 2014, vol. 55, pp. 9-14.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Major Science and Technology Project of China (No. 2014ZX07214-002). The authors (X.P.D) would like to acknowledge financial support from National Natural Science Foundation of China (Grant No. 51501114); Science and Technology Committee of Shanghai Municipality (Grant No. 15YF1406600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Fu or Aidang Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Fu, L., Zheng, H. et al. Effect of Annealing Temperature on Microstructure and Mechanical Properties of a Severe Cold-Rolled FeCoCrNiMn High-Entropy Alloy. Metall Mater Trans A 50, 3223–3237 (2019). https://doi.org/10.1007/s11661-019-05231-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05231-y

Navigation