Skip to main content
Log in

In Situ Time-Resolved Phase Evolution and Phase Transformations in U-6 Wt Pct Nb

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ time-resolved synchrotron X-ray diffraction experiments were conducted to study the fine-scale phase evolution of U-6Nb. Upon rapid heating from 125 °C to 400 °C, a reverse martensitic transformation sequence, α″ → γo → γs, was observed in less than 4 seconds, which represents the first direct observation of the γo → γs transformation in diffraction-based measurements. Consistent with previous ex situ metallography experiments, our isothermal hold experiments at 526 °C, 530 °C and 565 °C reveal two distinct reactions for the phase separation, γs → α-U + γ1 (general precipitation) followed by (α-U + γ1) → α-U + γ1-2 (discontinuous precipitation). For the first-stage precipitation, the incubation time is determined to be ~ 50 and 100 seconds, respectively, for the isothermal aging at 526-530 °C and 565 °C. At this stage, the phase transformation is characterized by the simultaneous growth of α-U and γ1 at the expense of γs. As expected from the Arrhenius equation for the reaction rate, the determined times (~ 23 minutes) for the completion of the first-stage reaction at 526 ± 3 °C and 530 ± 3 °C are nearly twice longer than that at 565 ± 4 °C (~ 13 minutes). Over these periods of time, the Nb contents derived from a Vegard’s-type relationship for γ1 are in the 30.2 to 32.1 and 29.2 to 30.6 at. pct ranges, and the kinetics of the precipitation at 565 ± 4 °C can be described by the classic Avrami rate equation and one-dimensional growth of a surface or grain-boundary nucleation. During the second-stage precipitation, the γ1 phase continues to enrich in Nb as it gradually evolves toward the α + γ1-2 metastable state (up to 47 at. pct over a period of 172 minutes at 530 °C). These new and time-resolved measurements can be used to better constrain the time–temperature–transformation diagram, solute (Nb) redistribution, and transformation kinetics during the early stages of the diffusional phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] Lehmann J. and Hills R.F., J. Nucl. Mater., vol. 2, 261-68, 1960.

    Article  Google Scholar 

  2. [2] Koike J., Kassner M.E., Tate R.E., and Rosen R.S, Journal of Phase Equilibria, 19, 253-259, 1998.

    Article  Google Scholar 

  3. [3] Duong T.C., Hackenberg R.E., Landa A., Honarmandi P., Talapatra A., Volz H.M., Llobet A., Smith A.I., King G., Bajaj S., Ruban A., Vitos L., Turchi P.E.A., Arróyave R., Calphad, 55, 219-230, 2016.

    Article  Google Scholar 

  4. [4] Eckelmeyer K.H., A.D. Romig, Jr., and L.J. Weirick, Metallurgical Transactions A 15A, 1319, 1984.

    Article  Google Scholar 

  5. R.E. Hackenberg, D.W. Brown, A.J. Clarke, L.B. Dauelsberg, R.D. Field, W.L. Hults, A.M. Kelly, M.F. Lopez, D.F. Teter, D.J. Thoma, T.J. Tucker, C.J. Vigil, and H.M. Volz: U–Nb Aging Final Report. Los Alamos National Laboratory Report LAUR-14327, 2007.

  6. R.E. Hackenberg, M.G. Emigh, A.M. Kelly, P.A. Papin, R.T. Forsyth, T.J. Tucker, and K.D. Clarke: The Surprising Occurrence of Non-steady-State Growth of Divergent Lamellar Decomposition Products in Uranium–Niobium Alloys: A Preliminary Report. Los Alamos National Laboratory Report LA-UR-12-25218, 2012.

  7. [7] Brown D.W., Bourke M.A.M., Clarke A.J., Field R.D., Hackenberr R.E., Hults W.L., Thoma D.J., J. Nucl. Mats. 481, 164-175, 2016.

    Article  Google Scholar 

  8. [8] Manna I., Pabi S.K., and Gust W., International Materials Reviews 46, 53-91, 2001.

    Article  Google Scholar 

  9. R.J. Jackson: Rocky Flats Plant Report RFP-1609, 1971.

  10. [10] Vandermeer R.A., Acta Metallurgica 28 383-393, 1980.

    Article  Google Scholar 

  11. [11] Hackenberg R.E., Volz H.M., Papin P.A., Kelly A.M., Forsyth R.T., Tucker T.J., and Clarke K.D., Solid State Phenomena 172-174, 555-560, 2011.

    Article  Google Scholar 

  12. [12] Volz H.M., Hackenberg R.E., Kelly A.M., Hults W.L., Lawson A.C., Field R.D., Teter D.F., Thoma D.J., Journal of Alloys and Compounds 444–445, 217–225, 2007

    Article  Google Scholar 

  13. [13] Clarke A.J., Field R.D., Hackenberg R.E., Thoma D.J., Brown D.W., Teter D.F., Miller M.K., Russell K.F., Edmonds D.V., Beverini G., J. Nucl. Mater., 393 282-291, 2009.

    Article  Google Scholar 

  14. [14] Brown D.W., Bourke M.A.M., Dunn P.S., Field R.D., Stout M.G., and Thoma D.J., Metallurgical and Materials Transactions A vol. 32A, 2219-2228, 2001.

    Article  Google Scholar 

  15. [15] Cady C.M., Gray III G.T., Chen S.R., Field R.D., Korzekwa D.R., Hixson R.S. and Lopez M.F., J. Phys. IV France 134 203–208, 2006.

    Article  Google Scholar 

  16. [16] Cady C.M., Gray III G.T., Chen S.R., Cerreta E.K., Trujillo C.P., Lopez M.F., Aikin Jr. R.M., Korzekwa D.R. and Kelly A.M., DYMAT 2009, 1045–1051, 2009.

    Google Scholar 

  17. [17] Tupper, C.N., Brown, D.W., Field, R.D., Sisneros T.A., and Clausen B., Metall and Mat Trans A 43, 520-530, 2012.

    Article  Google Scholar 

  18. R.E. Hackenberg, R.M. Aikin, A.M. Kelly, R.T. Forsyth, P.A. Papin, D.J. Alexander, T.J. Tucker, W.L. Hults, and M.F. Lopez: Microstructure and Mechanical Response of U–6Nb and U–8Nb in Gamma Quenched and Long-Term Aged Conditions. Los Alamos National Laboratory Report LA-14487, 2016.

  19. P.D. Desai and C.Y. Ho: Thermal Linear Expansion of Nine Selected AISI Stainless Steels. CINDAS-RP-51, 1978

  20. A.C. Larson and R.B. Von Dreele: GSAS—General Structure Analysis System. Los Alamos National Laboratory Report LAUR 86-748, 2000

  21. R.J. Jackson: Rocky Flats Plant Report RFP-1535, 1970.

  22. [22] Zhang J., Vogel S.C., Brown D.W., Clausen B., and Hackenberg R.E., J. Appl. Phys. 123, 175103, 2018.

    Article  Google Scholar 

  23. [23] Vandermeer R.A. Ogle J.C., and Snyder W.B., Scripta Metall. 12, 243-248, 1978.

    Article  Google Scholar 

  24. [24] Vandermeer R.A., Ogle J.C., and Northcutt W.G., Metall. Trans. A, 12A, 733-741, 1981.

    Article  Google Scholar 

  25. Avrami M., J. Chem. Phys. 71103-1112, 1939;

    Article  Google Scholar 

  26. Erofeev B.V., C. R. Acad. Sci., USSR 52 511, 1946.

    Google Scholar 

  27. [27] Christian J.W., The Theory of Transformations in Metals and Alloys, 1st ed. (Pergamon, Oxford, 1965).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). The research presented in this article was supported by the Science Campaign 4 Program. The synchrotron X-ray diffraction experiments were performed at beamline 1-ID of Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Brown, D.W., Clausen, B. et al. In Situ Time-Resolved Phase Evolution and Phase Transformations in U-6 Wt Pct Nb. Metall Mater Trans A 50, 2619–2628 (2019). https://doi.org/10.1007/s11661-019-05212-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05212-1

Navigation