Skip to main content
Log in

Effect of Sn Addition, Process Atmosphere pO2, and Annealing Time on the Selective Oxidation of a C-2Mn-1.7Si (Wt Pct) Advanced High-Strength Steel During Continuous Galvanizing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of process atmosphere pO2, annealing time, and a minor Sn addition on the selective oxidation of a Fe-0.1C-2Mn-1.7Si (wt pct) advanced high-strength steel during continuous galvanizing heat treatments were determined. The reference and 0.05 wt pct Sn-added steels were intercritically annealed at 1113 K (840 °C) for annealing times between 60 and 600 seconds in a N2-5 vol pct H2 gas atmosphere, where the process atmosphere pO2 was controlled by varying the dew points at 223 K, 243 K, and 278 K (−50 °C, −30 °C and +5 °C). It was found that both the internal and external oxidation kinetics followed a parabolic rate law and were significantly reduced by the Sn addition to the alloy. For the lowest pO2 223 K (−50 °C) dew point atmosphere, the external oxides comprised compact, film-like MnSiO3, SiO2, and granular MnO. The addition of Sn to the alloy reduced the compactness of the granular oxides. Increasing the atmosphere dew point to 243 K and 278 K (−30 °C and +5 °C) reduced the thickness of the external oxides and increased the depth of internal oxidation for both alloys. Under the highest pO2 278 K (+5 °C) dew point atmosphere, although the reference steel surface was covered with small, closely packed MnSiO3 nodule-like particles, the addition of Sn altered their morphology to larger, more widely spaced nodules and decreased the depth of internal oxidation. The effect of Sn was found to be the result of its segregation at the surface oxide/substrate interface, as shown by 3D atom probe tomography. The alterations in oxide morphology resulting from the Sn addition are expected to enhance the reactive wetting of the substrate surfaces by the continuous galvanizing bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, and S. Claessens: Revue De Métallurgie, 2004, vol. 101, pp. 831-37.

    Article  Google Scholar 

  2. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905-8.

    Article  Google Scholar 

  3. J. Mahieu, S. Claessens, B.C. De Cooman, and F. Goodwin: in 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet Conference, Chicago, 2004, pp. 529–38.

  4. E.M. Bellhouse: McMaster University, 2010.

  5. I. Parezanović: Rheinisch-Westfälische Technische Hochschule Aachen, 2005.

  6. E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1539-53.

    Article  Google Scholar 

  7. [7] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2426-41.

    Article  Google Scholar 

  8. [8] M. Norden, M. Blumenau, T. Wuttke, and K.J. Peters: Appl. Surf. Sci., 2013, vol. 271, pp. 19–31.

    Article  Google Scholar 

  9. [9] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2753–68.

    Article  Google Scholar 

  10. S. Alibeigi, R. Kavitha, R.J. Meguerian, and J.R. McDermid: Acta Mater., 2011, vol. 59, pp. 3537-49.

    Article  Google Scholar 

  11. S. Prabhudev, S. Swaminathan, and M. Rohwerder: Corros. Sci., 2011, vol. 53, pp. 2413-18.

    Article  Google Scholar 

  12. R. Sagl, A. Jarosik, D. Stifter, and G. Angeli: Corros. Sci., 2013, vol. 70, pp. 268-75.

    Article  Google Scholar 

  13. L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 362-71.

    Article  Google Scholar 

  14. H. Liu, Y. He, S. Swaminathan, M. Rohwerder, and L. Li: Surf. Coatings Technol., 2011, vol. 206, pp. 1237-43.

    Article  Google Scholar 

  15. V.F.C. Lins, L. Madeira, J.M.C. Vilela, M.S. Andrade, V.T.L. Buono, J.P. Guimarães, and E.A. Alvarenga: Appl. Surf. Sci., 2011, vol. 257, pp. 5871-78.

    Article  Google Scholar 

  16. M.S. Kim, J.H. Kwak, J.S. Kim, Y.H. Liu, N. Gao, and N.Y. Tang: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1903-10.

    Article  Google Scholar 

  17. K. Kahoul and M. Turchetto: in 10th International Conference on. Zinc Zinc Alloy Coated Steel Sheet Conference, Toronto, 2015, pp. 436–43.

  18. Y.F. Gong and B.C. De Cooman: Iron Steel Inst. Japan Int., 2011, vol. 51, pp. 630-37.

    Article  Google Scholar 

  19. M. Seah: Acta Metall., 1980, vol. 28, pp. 955–62.

    Article  Google Scholar 

  20. M.P. Seah: J. Catalysts, 1979, vol. 57, pp. 450-57.

    Article  Google Scholar 

  21. M.P. Seah and E.D. Hondros: Proc. R. Soc. Lond. A., 1973, vol. 335, pp. 191-212.

    Article  Google Scholar 

  22. H. Viefhaus and M. Rusenberg: Surf. Sci., 1985, vol. 159, pp. 1-23.

    Article  Google Scholar 

  23. L. Yin and S. Sridhar: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1095-1107.

    Article  Google Scholar 

  24. L. Cho, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4484-98.

    Article  Google Scholar 

  25. L. Cho, E.J. Seo, G.S. Jung, D.W. Suh, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1705-19.

    Article  Google Scholar 

  26. G. Lyudkovsky: IEEE Trans. Magn., 1986, vol. 22, pp. 508-10.

    Article  Google Scholar 

  27. E. Clauberg, C. Uebing, and H.J. Grabke: Appl. Surf. Sci., 1999, vol. 143, pp. 206-14.

    Article  Google Scholar 

  28. Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier, and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, 550-66.

    Article  Google Scholar 

  29. Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier, and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 567-84.

    Article  Google Scholar 

  30. D.S. Petrovic, M. Jenko, V. Gontarev, and H.J. Grabke: Kovine, Zlitine, Tehnologije, 1998, vol. 32, pp. 493-6.

    Google Scholar 

  31. D.A. Melford: Proc. R. Soc. Lond. A., 1980, vol. 295, pp. 89-103.

    Google Scholar 

  32. Y. Li, J.P. Han, Z.H. Jiang, and P. He: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 37-44.

    Article  Google Scholar 

  33. M. Pourmajidian, B. Langelier, and J.R. McDermid: Metall. Mat. Trans. A, 2018, vol. 49A, pp. 5561-73.

    Article  Google Scholar 

  34. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131-9.

    Article  Google Scholar 

  35. C.R. Brundle, C.A. Evans, and S. Wilson, Jr.: Encyclopedia of Materials Characterization, Butterworth-Heinemann, Boston, 1992.

  36. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High-Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  37. C. Wagner: Zh. Elektrochem., 1959, vol. 63, pp. 772-82.

    Google Scholar 

  38. A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet, and J.R. McDermid: Appl. Surf. Sci., 2016, vol. 379, pp. 242–8.

    Article  Google Scholar 

  39. H.K. Schmid and W. Mader: Micron, 2006, vol. 37, pp. 426-32.

    Article  Google Scholar 

  40. C.C. Ahnn and O.L. Krivanek: with contributions by: R.P Burgner, M.M. Disko, and P.R. Swann, EELS Atlas, A Reference Guide of Electron Energy Loss Spectra Covering All Stable Elements, Gatan Inc., Warrendale, 1983.

  41. E.A. Marquis, B.P. Geiser, T.J. Prosa, and D.J. Larson: J. Microscopy, 2011, vol. 241, pp. 225-33.

    Article  Google Scholar 

  42. G. Seyed Mousavi and J.R. McDermid: Surf. Coat. Technol., 2018, vol. 351, pp. 11-20.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stelco Inc. and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support of this work through the NSERC/Stelco Industrial Research Chair in Advanced Coated Steels (Grant No. IRCPJ 305921-12). The authors also thank U.S. Steel R&D for provision of the experimental substrates. The authors are grateful to Messrs. John Thomson and Raymond Fullerton from the McMaster Steel Research Centre for assistance with the galvanizing simulations, Mr. Travis Casagrande and Dr. Andreas Korinek from the Canadian Centre for Electron Microscopy for aid with the sample analysis, and Ms. Li Sun (ArcelorMittal Dofasco) for assistance with XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. McDermid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyed Mousavi, G., Langelier, B. & McDermid, J.R. Effect of Sn Addition, Process Atmosphere pO2, and Annealing Time on the Selective Oxidation of a C-2Mn-1.7Si (Wt Pct) Advanced High-Strength Steel During Continuous Galvanizing. Metall Mater Trans A 50, 2898–2911 (2019). https://doi.org/10.1007/s11661-019-05202-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05202-3

Navigation