Skip to main content
Log in

Effect of Annealing Temperature on Mechanical Behavior, Pitting Resistance and Grain Boundary Character of a 2304 Lean Duplex Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of the annealing temperature on mechanical behavior, pitting resistance, and grain boundary character of 2304 lean duplex stainless steel was studied. For this purpose, 4 mm thick hot-rolled sheets were cold-rolled up to a thickness of 1 mm, followed by isochronal annealing from 900 °C to 1100 °C for 180 seconds. Microstructural and CSL boundary analysis were carried out by electron backscatter diffraction technique. The SIM formation was examined by transmission electron microscopy and the phase distribution was quantified by X-ray diffraction. Mechanical properties were evaluated based on microhardness measurements and tensile tests, and the electrochemical analyses were performed by potentiodynamic polarization studies. The results revealed a Nishiyama–Wasserman relationship between α′-martensite laths and the metastable austenite after cold rolling. Increasing temperature enhanced the softening and ductility but decreased yield and tensile strengths of specimens. The deformation-induced martensitic transformation took place less actively and the strain-hardening rate decreased at higher temperatures. The improvement in ductility was related to the increasing fraction of \( \sum 3 \) boundaries in the austenite, whereas the strength worsening was associated with the increasing fraction of the \( \sum {13b} \) boundaries in the ferrite as temperature increased. The nucleation of metastable pits changed from austenite to the ferrite phase and the pitting potential shifted to nobler values with increasing annealing temperature. The increasing pitting resistance of austenite was associated with the increase in the fraction of \( \sum 3 \) boundaries, while the decreasing pitting resistance of ferrite was related to the increased fraction of the \( \sum {13b} \) boundaries at higher annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Schweitzer: Metallic materials: physical, mechanical, and corrosion properties, Marcel Dekker, Inc., New York, 2003, pp. 712.

    Book  Google Scholar 

  2. T.J. Mesquita, E. Chauveau, M. Mantel, N. Kinsman, V. Roche, R.P. Nogueira: Mater. Chem. Phys., 2012, vol. 132, pp. 967–72.

    Article  Google Scholar 

  3. M. Breda, L. Pezzato, M. Pizzo, I. Calliari: La Metall. Ital., 2014, vol. 6, pp. 15–9.

    Article  Google Scholar 

  4. Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, Y. Wu: Materials, 2014, vol. 7, pp. 6604–19.

    Article  Google Scholar 

  5. S. Bernhardsson: The corrosion resistance of duplex stainless steels, in Conf Proc of Duplex Stainless Steels 91’, vol. 1, Les éditions de phisique, Beaune, 1991, pp. 185–210.

    Google Scholar 

  6. Z. Zhang, D. Han, Y. Jiang, C. Shi, J. Li: Nucl. Eng. Des., 2012, vol. 243, pp. 56–62.

    Article  Google Scholar 

  7. L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun, J. Li: Electrochem. Acta, 2009, vol. 54, pp. 5387–92.

    Article  Google Scholar 

  8. G. Krauss: Steels: processing, structure, and performance, ASM Int., Ohio, 2005.

    Google Scholar 

  9. L. Jinlong, L. Tongxiang, W. Chen, D. Limin: Mater. Sci. Eng. C., 2016, vol. 62, pp. 558–63.

    Article  Google Scholar 

  10. J.A. Jiménez, G. Frommeyer, M. Carsí, O.A. Ruano: Mater. Sci. Eng. A., 2001, vol. 307, pp. 134–42.

    Article  Google Scholar 

  11. B. Bhadak, M. Zaid, P. Bhattacharjee: Procedia Mater. Sci., 2014, vol. 5, pp 855–62.

    Article  Google Scholar 

  12. C.L. Beech: Effect of temperature and strain rate on the mechanical properties and deformation behavior of a duplex stainless steel, M.S. Thesis, Colorado School of Mines, Golden, CO, 1989.

  13. C. Herrera, D. Ponge, D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64.

    Article  Google Scholar 

  14. Q. Ran, Y. Xu, J. Li, J. Wan, X. Xiao, H. Yu, et al.: Mater. Des., 2014, vol. 56, pp. 959–65.

    Article  Google Scholar 

  15. N. Saenarjhan, J.-H. Kang, S.C. Lee, S.-J. Kim: Mater. Sci. Eng. A, 2017, vol. 679, pp. 531–7

    Article  Google Scholar 

  16. H.W. Yen, S.W. Ooi, M. Eizadjou, A. Breen, C.Y. Huang, H.K. Bhadeshia, et al.: Acta Mater., 2015, vol. 82, pp. 100–14.

    Article  Google Scholar 

  17. T. Watanabe: Le Journal de Physique Colloques, 1988, vol. 49, pp. 507–19.

    Google Scholar 

  18. J. Qi, B. Huang, Z. Wang, H. Ding, J. Xi, W. Fu: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1621–8.

    Article  Google Scholar 

  19. A. Yunquera, D. Jorge-Badiola, I. Gutiérrez, A. Iza-Mendia: IOP Conf Series: Mater. Sci. Eng., 2015, vol. 82, pp. 1–4.

    Google Scholar 

  20. D. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  Google Scholar 

  21. M.Z. Ahmed, P.P. Bhattacharjee: Steel Res. Int., 2016, vol. 87, pp. 472–83.

    Article  Google Scholar 

  22. M. Ahmed, P. Bhattacharjee: ISIJ Int., 2014, vol. 54, pp. 2844–53.

    Article  Google Scholar 

  23. J. Keichel, J. Foct, G. Gottstein: ISIJ Int., 2003, vol. 43, pp. 1788–94.

    Article  Google Scholar 

  24. M. Moallemi, A. Zarei-Hanzaki, H.S. Baghbadorani: Mater. Sci. Eng. A, 2017, vol. 683, pp. 83–9.

    Article  Google Scholar 

  25. J.-E. Jin, Y.-K. Lee: Acta Mater., 2012, vol. 60, pp. 1680–8.

    Article  Google Scholar 

  26. Y. Li, W. Li, J.C. Hu, H.M. Song, X.J. Jin: Int. J. Plast., 2017, vol. 88, pp. 53–69.

    Article  Google Scholar 

  27. L. Duprez, B.C. De Cooman, N. Akdut: Steel Res., 2002, vol. 73, 531–8.

    Article  Google Scholar 

  28. L. Duprez, B.C. De Cooman, N. Akdut: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1931–8.

    Article  Google Scholar 

  29. G. Fargas, N. Akdut, M. Anglada, A. Mateo: ISIJ Int., 2008, vol. 48, pp. 1596–602.

    Article  Google Scholar 

  30. M. Breda, K. Brunelli, F. Grazzi, A. Scherillo, I. Calliari: Metall. Mater. Trans. A, 2015, vol. 46, pp. 577–86.

    Article  Google Scholar 

  31. S.S. Tavares, J.M. Pardal, M.R. Silva, C.A. de Oliveira: Mater. Res., 2014, vol. 17, pp. 381–5.

    Article  Google Scholar 

  32. S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja: Metall. Mater. Trans. A, 2016, vol. 47, pp. 49–58.

    Article  Google Scholar 

  33. Z. Nishiyama: Sci. Rep. Tohoku Imp. Univ., 1934, vol. 23, pp. 637–64.

    Google Scholar 

  34. G. Wassermann: Über den mechanismus der α-γ umwandlung des eisens, in: Mitteilungen aus dem Kaiser-Wilhelm-Institut für Eisenforschung, Verlag Stahleisen, Düsseldorf, 1935.

  35. P.O. Malta, F.L. Dias, A.C.M. de Souza, D.B. Santos: Mater. Charact., 2018, vol. 142, pp. 406–21

    Article  Google Scholar 

  36. A. Kurc-Lisiecka, W. Ozgowicz, W. Ratuszek, K. Chruściel: J. Achiev. Mater. Manuf. Eng., 2012, vol. 52, pp. 22–30.

    Google Scholar 

  37. G. Kurdjumov, G. Sachs: Z. Phys., 1930, vol. 64, 325–43.

    Article  Google Scholar 

  38. F. J. Humphreys, M. Hatherly: Recrystallisation and related annealing phenomena, Oxford: Pergamom, 1995.

    Google Scholar 

  39. K. Tomimura, T. Takaki, Y. Tokunaga: ISIJ Int. 1991, vol. 31, pp. 1431–7.

    Article  Google Scholar 

  40. A. Belyakov, Y. Kimura, K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 403, pp. 249–59.

    Article  Google Scholar 

  41. Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, Y. Wu: Mater., 2014, 7, 6604–19.

    Article  Google Scholar 

  42. Y. Jin, M. Bernacki, G. Rohrer, A. Rollett, B. Lin, N. Bozzolo: Formation of annealing twins during recrystallization and grain growth, in: 5th Int. Conf. Recrystallization and Grain Growth, Sydney, 2013.

  43. A. Moura, L. Favarato, A. Filho, C. Alcântara, M. Cunha, T. Oliveira, M. Machado: Mater. Charact., 2017, vol. 130, pp. 39–49.

    Article  Google Scholar 

  44. W. Reick, M. Pohl, A.F. Padilha: ISIJ Int., 1998, vol. 38, pp. 567–71.

    Article  Google Scholar 

  45. P.O. Malta, C.M. Gonçalves, D.S. Alves, A.O. Ferreira, I.D. Moutinho, D.B. Santos: J. Mater. Res., 2016, vol. 31, pp. 2838–49.

    Article  Google Scholar 

  46. P.O. Malta, D.S. Alves, A.O. Ferreira, I.D. Moutinho, C.A. Dias, D.B. Santos: Metall. Mater. Trans. A, 2017, vol. 48, pp. 1288–309.

    Article  Google Scholar 

  47. W. Zhang, J. Hu: Mater. Charact., 2013, vol. 79, pp. 37–42.

    Article  Google Scholar 

  48. S. Mahajan, C. Pande, M. Imam. B. Rath: Acta Mater., 1997, vol. 45, pp. 2633–8.

    Article  Google Scholar 

  49. E.M Lehockey, G. Palumbo, K.T Aust, U. Erb, P. Lin: Scripta Mater., 1998, vol. 39, pp. 341–6.

    Article  Google Scholar 

  50. V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–81.

    Article  Google Scholar 

  51. H. Yan, H. Bi, X. Li, Z. Xu: Mater. Charact., 2009, vol. 60, pp. 65–8.

    Article  Google Scholar 

  52. H. Hwang, Y. Park: Mater. Trans., 2009, vol. 50, pp. 1548–52

    Article  Google Scholar 

  53. M. Dabalà, I. Calliari, A. Variola: J. Mater. Eng. Perform., 2004, vol. 13, pp. 237–40.

    Article  Google Scholar 

  54. R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Elsevier, Cambridge, 1997, pp. 216.

    Book  Google Scholar 

  55. M.B. Cortie, J.H. Potgieter: Metall. Trans. A, 1991, vol. 22, pp. 2173–9.

    Article  Google Scholar 

  56. M. Femenia, J. Pan, C. Leygraf: J. Electrochem. Soc., 2004, vol. 151, pp. 581–585.

    Article  Google Scholar 

  57. G.S. Eklund: J. Electrochem. Soc., 1974, vol. 121, pp. 467–73.

    Article  Google Scholar 

  58. Y. Mori, Y. Gao, J. Liao, S. Motod: Corros. Eng., 2017, 66, 93–98.

    Article  Google Scholar 

  59. Z. Szklarska-Smialowska: Corros., 1972, vol. 28, 388–96.

    Article  Google Scholar 

  60. S.J. Kim, S.G. Hong, M.-S. Oh: J. Mater. Res., 2017, vol. 32, pp. 1343–50.

    Article  Google Scholar 

  61. T. Suter, H. Böhni: Electrochim. Acta, 1997, vol. 42, pp. 3275–80.

    Article  Google Scholar 

  62. X.-Y. Fang, W.-G. Wang, H. Guo, X. Zhang, B.-X. Zhou: J. Iron Steel Res. Int., 2007, vol. 14, pp. 339–43.

    Article  Google Scholar 

  63. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe: Acta Mater., 2002, vol. 50, pp. 2331–41.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES-PROEX, FAPEMIG, and CNPq for research fellowships made available to students and for their financial support. Thanks are expressed to UFMG Microscopy Center and Universidade Federal de Ouro Preto for providing excellent scientific support. We also thank Aperam South America SA Company for the samples supplied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula O. Malta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 23, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malta, P.O., Condé, B.L., Assumpção, R.F. et al. Effect of Annealing Temperature on Mechanical Behavior, Pitting Resistance and Grain Boundary Character of a 2304 Lean Duplex Stainless Steel. Metall Mater Trans A 50, 2665–2677 (2019). https://doi.org/10.1007/s11661-019-05193-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05193-1

Navigation