Skip to main content
Log in

Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigated the relationship between the microstructure and mechanical properties of additive manufactured AISI 316L steel regarding the grain aspect ratio and orientation. For this purpose, two types of specimen (vertically and horizontally built) were prepared by a selective laser melting process, and the mechanical behavior was evaluated in different tensile directions. After this, to observe the characteristic grain boundary distributions such as grain size, shape, orientation, and intergranular misorientation, electron backscattering diffraction analysis was conducted on the initial and tensile-strained specimens. The specimen with a lower grain aspect ratio showed enhanced yield and tensile strengths arising from the higher strain hardening rate relative to the specimen with higher grain aspect ratio. In addition, the material composed of grains with a higher Taylor factor showed more accumulated dislocation density during tensile deformation when compared to the material composed of grains with a lower Taylor factor, which also contributed to the increase in tensile strengths because of the enhanced strain hardening rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. J. Hebert, J Mater. Sci., 2016, vol. 51, pp. 1165-1175.

    Article  Google Scholar 

  2. M. Seifi, A. Salem, J. Beuth, O. Harrysson and J. J. Lewandowski, JOM, 2016, vol. 68, pp. 747-764.

    Article  Google Scholar 

  3. W. E. Frazier, J Mater. Eng. Perform., 2014, vol. 23, pp. 1917-1928.

    Article  Google Scholar 

  4. B. Vayre, F. Vignat and F. Villeneuve, Mech. Ind., 2012, vol. 13, pp. 89-96.

    Article  Google Scholar 

  5. L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina and R. B. Wicker, J Mater. Sci. Technol., 2012, vol. 28, pp. 1-14.

    Google Scholar 

  6. D. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Int. Mater. Rev., 2012, vol. 57, pp. 133-164.

    Article  Google Scholar 

  7. P. K. Gokuldoss, S. Kolla and J. Eckert, Materials, 2017, vol. 10, pp. 672.

    Article  Google Scholar 

  8. K. Kunze, T. Etter, J. Grässlin and V. Shklover, Mater. Sci. Eng. A, 2015, vol. 620, pp. 213-222.

    Article  Google Scholar 

  9. I. Yadroitsev, P. Krakhmalev and I. Yadroitsava, J Alloy. Compd., 2014, vol. 583, pp. 404-409.

    Article  Google Scholar 

  10. M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang and K. Zhou, Mater. Sci. Eng. A, 2017, vol. 701, pp. 344-351.

    Article  Google Scholar 

  11. B. Chen, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda and K. Kondoh, Scr. Mater., 2017, vol. 141, pp. 45-49.

    Article  Google Scholar 

  12. B. Baufeld, O. V. D. Biest, and R. Gault, Mater. Design, 2010, vol. 31, pp. S106–S111.

  13. L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck and J.-P. Kruth, Acta Mater., 2010, vol. 58, pp. 3303-3312.

    Article  Google Scholar 

  14. A. A. Antonysamy, J. Meyer and P. B. Prangnell, Mater. Charact., 2013, vol. 84, pp. 153-168.

    Article  Google Scholar 

  15. S.-H. Sun, Y. Koizumi, S. Kurosu, Y.-P. Li, H. Matsumoto and A. Chiba, Acta Mater., 2014, vol. 64, pp. 154-168.

    Article  Google Scholar 

  16. J. Günther, F. Brenne, M. Droste, M. Wendler, O. Volkova, H. Biermann and T. Niendorf, Sci. rep., 2018, vol. 8, pp. 1298.

    Article  Google Scholar 

  17. C. H. Cáceres and P. Lukáč, Philos. Mag., 2008, vol. 88, pp. 977-989.

    Article  Google Scholar 

  18. X. Duan, D. Wang, K. Wang and F. Han, Philos. Mag. Lett., 2013, vol. 93, pp. 316-321.

    Article  Google Scholar 

  19. W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff and S. S. Babu, Int. Mater. Rev., 2016, vol. 61, pp. 315-360.

    Article  Google Scholar 

  20. D. Tomus, Y. Tian, P. A. Rometsch, M. Heilmaier and X. Wu, Mater. Sci. Eng. A, 2016, vol. 667, pp. 42-53.

    Article  Google Scholar 

  21. S. Cao, Z. Chen, C. V. S. Lim, K. Yang, Q. Jia, T. Jarvis, D. Tomus and X. Wu, JOM, 2017, vol. 69, pp. 2684-2692.

    Article  Google Scholar 

  22. L. Kaden, G. Matthäus, T. Ullsperger, H. Engelhardt, M. Rettenmayr, A. Tünnermann and S. Nolte, Appl. Phys. A, 2017, vol. 123, pp. 596.

    Article  Google Scholar 

  23. T.V. Tarasova, A.P. Nazarov and M.V. Prokof’ev, Phys. Met. Metall., 2015, vol. 116, pp. 601–05.

  24. R. Blandford, D. Morton, S. Snow, and T. Rahl, ASME, 2007, pp. 617–28.

  25. X. Sun, Y. Guo, Q. Wei, Y. Li and S. Zhang, Mater. Sci. Eng. A, 2016, vol. 669, pp. 226-245.

    Article  Google Scholar 

  26. Q. Sun, F. Wang, Y. Gao and J. Zhao, Mol. Simulat., 2016, vol. 42, pp. 1202–1208.

    Article  Google Scholar 

  27. Y. Takayama and J. A. Szpunar, Mater. Trans., 2004, vol. 45, pp. 2316-2325.

    Article  Google Scholar 

  28. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-2746.

    Article  Google Scholar 

  29. J. Jiang, T. B. Britton and A. J. Wilkinson, Int. J Plasticity, 2015, vol. 69, pp. 102-117.

    Article  Google Scholar 

  30. Y. Mo, Y. Jiang, X. Liu and J. Xie, Mater. Sci. Eng. A, 2016, vol. 670, pp. 122-131.

    Article  Google Scholar 

  31. M. V. Borodii, Strength of Materials, 2005, vol. 37, pp. 525-534.

    Article  Google Scholar 

  32. P. O. Kettunen and U. F. Kocks, Acta Metallurgica, 1972, vol. 20, pp. 95-103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuk-Hyun Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, YD., Kim, KH., Jung, KH. et al. Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel. Metall Mater Trans A 50, 2014–2021 (2019). https://doi.org/10.1007/s11661-019-05139-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05139-7

Navigation