Skip to main content
Log in

Selective laser melting of copper using ultrashort laser pulses

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 \({\upmu }\)m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, J. Mater. Process. Technol. 149(1–3), 616 (2004)

    Article  Google Scholar 

  2. E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Int. J. Mach. Tools Manuf. 46(12–13), 1459 (2006)

    Article  Google Scholar 

  3. B. Nie, H. Huang, S. Bai, J. Liu, Appl. Phys. A 118(1), 37 (2014)

    Article  ADS  Google Scholar 

  4. S. Pogson, P. Fox, C. Sutcliffe, W. O'Neill, Rapid Prototyp. J. 9(5), 334 (2003)

    Article  Google Scholar 

  5. B. Nie, L. Yang, H. Huang, S. Bai, P. Wan, J. Liu, Appl. Phys. A 119(3), 1075 (2015)

    Article  ADS  Google Scholar 

  6. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, S. Nolte, Opt. Express 21(13), 15452 (2013)

    Article  ADS  Google Scholar 

  7. S.M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Express 13(12), 4708 (2005)

    Article  ADS  Google Scholar 

  8. T. Ullsperger, G. Matthäus, L. Kaden, M. Rettenmayr, S. Risse, A. Tünnermann, S. Nolte, in SPIE Photonics West 2017: Laser 3D Manufacturing IV (2017), 10095-41

  9. K. Yoshida, H. Morigami, Microelectron. Reliab. 44(2), 303 (2004)

    Article  Google Scholar 

  10. G.G. Gu, Y.F. Shen, Powder Metall. 49(3), 258 (2006)

    Article  Google Scholar 

  11. H.H. Zhu, L. Lu, J.Y.H. Fuh, Journal of Materials Processing Technology 140(1–3), 314 (2003). Proceedings of the 6th Asia Pacific Conference on materials Processing

  12. C. Jauregui, J. Limpert, A. Tünnermann, Nature Photonics 7(11), 861 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported from the German Aerospace Center (DLR) within the project ultraLEICHT under Grant Number 50EE1408 and the German Federal Ministry of Education and Research (BMBF) within the project AM-OPTICS (02P15B203). Lisa Kaden was supported by TRUMPF Laser GmbH. The authors would like to thank Detlef Schelle for performing focus ion beam analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Kaden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaden, L., Matthäus, G., Ullsperger, T. et al. Selective laser melting of copper using ultrashort laser pulses. Appl. Phys. A 123, 596 (2017). https://doi.org/10.1007/s00339-017-1189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1189-6

Navigation