Skip to main content
Log in

Quantitative Study of Microstructure-Dependent Thermal Conductivity in Mg-4Ce-xAl-0.5Mn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of microstructure on thermal conductivity was investigated for Mg-4Ce-xAl-0.5Mn (x = 0 to 6 wt pct) alloys produced by gravity casting and high-pressure die casting. The solidification microstructure of the alloys was quantitatively studied using CALculation of PHase Diagrams (CALPHAD) modeling and experimental characterization. The lattice volume of Mg solid solution was measured via X-ray diffraction (XRD) method. The results show that the thermal conductivity is influenced mostly by lattice volume, and, to a lesser extent, by intermetallic compounds. Also, thermal conductivity has a strong negative correlation with the concentration of total solute atoms. When the addition of Al is less than 3 wt pct, the thermal conductivity of die casting alloys with higher cooling rate and solute concentration is lower than that of gravity casting alloys. However, their thermal conductivities tend to be equal when the Al addition exceeds about 3 wt pct, as the concentration of solute atom is approaching the solid solubility limit. Two methods (structural model and Wiedemann–Franz law) were proposed and modified to predict their thermal conductivities, respectively. Both can provide a good prediction of thermal conductivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  2. M.K. Kulekci: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–65.

    Article  Google Scholar 

  3. X. Shi, D. Li, A.A. Luo, B. Hu, L. Li, X. Zeng, and W. Ding: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4788–99.

    Article  Google Scholar 

  4. A. Rudajevová, M. Staněk, and P. Lukáč: Mater. Sci. Eng. A, 2003, vol. 341, pp. 152–57.

    Article  Google Scholar 

  5. A. Rudajevová, J. Kiehn, K.U. Kainer, B.L. Mordike, and P. Lukáč: Scr. Mater., 1999, vol. 40, pp. 57–62.

    Article  Google Scholar 

  6. C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding, and S. Xiao: Mater. Des., 2015, vol. 84, pp. 48–52.

    Article  Google Scholar 

  7. T. Ying, H. Chi, M. Zheng, Z. Li, and C. Uher: Acta Mater., 2014, vol. 80, pp. 288–95.

    Article  Google Scholar 

  8. C. Su, D. Li, A.A. Luo, T. Ying, and X. Zeng: J. Alloys Compd., 2018, vol. 747, pp. 431–37.

    Article  Google Scholar 

  9. T.B. Massalski and H. Okamoto: Binary Alloys Phase Diagrams, 2nd ed., Springer, Berlin, 1990, pp. 574–84.

    Google Scholar 

  10. J. Zhang, Z. Leng, M. Zhang, J. Meng, and R. Wu: J. Alloys Compd., 2011, vol. 509, pp. 1069–78.

    Article  Google Scholar 

  11. T. Rzychoń, A. Kiełbus, J. Cwajna, and J. Mizera: Mater. Charact., 2009, vol. 60, pp. 1107–13.

    Article  Google Scholar 

  12. S. Zhu, T. Abbott, M. Gibson, J. Nie, and M. Easton: Mater. Sci. Eng. A, 2016, vol. 656, pp. 343–38.

    Article  Google Scholar 

  13. J.F. Wang, J. K. Carson, M. F. North, and D. J. Cleland: Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3075–83.

    Article  Google Scholar 

  14. R.C. Progelhof, J.L. Throne, and R.R. Reutsch: Polym. Eng. Sci., 1976, vol. 16, pp. 615–25.

    Article  Google Scholar 

  15. E. Behrens: J. Compos. Mater., 1968, vol. 2, pp. 2–17.

    Article  Google Scholar 

  16. T.H. Bauer: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 4181–91.

    Article  Google Scholar 

  17. J. K. Carson and J. P. Sekhon: Int. Commun. Heat Mass Transfer, 2010, vol. 37, pp. 1226–29.

    Article  Google Scholar 

  18. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, and P.J. Uggowitzer: Mater. Sci. Eng. A, 2013, vol. 560, pp. 481–91.

    Article  Google Scholar 

  19. J.K. Chen, H.Y. Hung, F. Wang, and K. Tang: J. Mater. Sci., 2015, vol. 50, pp. 5630–39.

    Article  Google Scholar 

  20. Powell RW: Int. J. Heat Mass Transfer, 1965, vol. 8, pp. 1033–45.

    Article  Google Scholar 

  21. C. Uher: Thermal ConductivityTheory, Properties and Applications, Kluwer Academic/Plenum Publishers, New York, 2004, pp. 21–91.

    Google Scholar 

  22. Y.S. Touloukiana and E.H. Buyco: Thermophysical Properties of Matter, Plenum Press, New York, 1970, pp. 124–127.

    Google Scholar 

  23. A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner: Thermochim. Acta, 2002, vol. 382, pp. 269–75.

    Article  Google Scholar 

  24. Alan A. Luo: CALPHAD, 2015, vol. 50, pp. 6–22.

    Article  Google Scholar 

  25. Renhai Shi and Alan A. Luo: CALPHAD, 2018, vol. 62, pp. 1–17.

    Article  Google Scholar 

  26. J. Wang, R. Liao, L. Wang, Y. Wu, Z. Cao, and L. Wang: J. Alloys Compd., 2009, vol. 477, pp. 341–45.

    Article  Google Scholar 

  27. W. Sun, X. Shi, E. Cinkilic, and A. A. Luo: J. Mater. Sci., 2016, vol. 51, pp. 6287–94.

    Article  Google Scholar 

  28. J. Yang: Thermal Conductivity—Theory, Properties and Applications, Kluwer Academic/Plenum Publishers, New York, 2004, pp. 1–20.

    Google Scholar 

  29. J. Peng, L. Zhong, Y. Wang, Y. Lu, and F. Pan: Mater. Des., 2015, vol. 87, pp. 914–19.

    Article  Google Scholar 

  30. P. G. Klemens and R. K. Williams: Int. Met. Rev., 1986, vol. 31, pp. 197–215.

    Article  Google Scholar 

  31. J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, and G. Shi: J. Alloys Compd., 2013, vol. 578, pp. 32–36.

    Article  Google Scholar 

  32. A.R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk: Metall. Mater. Trans., 2009, vol. 40, pp. 2435–2446.

    Article  Google Scholar 

  33. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  Google Scholar 

  34. J.C. Maxwell: A Treatise on Electricity and Magnetism, 3rd ed., Dover Publications Inc., New York, 1954, Chapter 9.

    Google Scholar 

  35. J. Wang, J.K. Carson, M.F. North, and D.J. Cleland: Int. J. Heat Mass Transfer, 2008, vol. 51, pp. 2389–97.

    Article  Google Scholar 

  36. R. Landauer: J. Appl. Phys., 1952, vol. 23, pp. 779–84.

    Article  Google Scholar 

  37. J. Helsing and G. Grimvall: J. Appl. Phys., 1991, vol. 70, pp. 1198–1206.

    Article  Google Scholar 

  38. R. L. Hamilton and O. K. Crosser: Ind. Eng. Chem. Fundamen., 1962, vol. 1, pp. 187–91.

    Article  Google Scholar 

  39. J.-B. Vaney, A. Piarristeguy, V. Ohorodniichuck, O. Ferry, A. Pradel, E. Alleno, J. Monnier, E. B. Lopes, A. P. Gonçalves, G. Delaizir, C. Candolfi, A. Dauscher, and B. Lenoir: J. Mater. Chem. C, 2015, vol. 3, pp. 11090–98.

    Article  Google Scholar 

  40. H.C. Pan, F.S. Pan, R.M. Yang, J. Peng, C.Y. Zhao, J. She, Z.Y. Gao, and A.T. Tang: J. Mater. Sci., 2014, vol. 49, pp. 3107–24.

    Article  Google Scholar 

  41. Y.S. Touloukian: Thermophysical Properties of Matter, Plenum Press, New York, 1970, pp. 1310–17.

    Google Scholar 

  42. H. Pan, F. Pan, X. Wang, J. Peng, J. Gou, J. She, and A. Tang: Int. J. Thermophys., 2013, vol. 34, pp. 1336–46.

    Article  Google Scholar 

  43. R.N. Lumley, N. Deeva, R. Larsen, J. Gembarovic, and J. Freeman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1074–86.

    Article  Google Scholar 

  44. X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, and J.-C. Zhao: Acta Mater., 2007, vol. 55, pp. 5177–85.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding for the National Key R&D Program (No. 2016YFB0301002) supported by the Ministry of Science and Technology of China and the Major Science and Technology projects in Qinghai province (2018-GX-A1). This work was co-funded by the National Natural Science Foundation of China (Nos. 51301107, 51601111). C. Su would also like to express his gratitude to China Scholarship Council for supporting his stay at The Ohio State University as a visiting scholar. D. Li acknowledges the financial support received from Shanghai Jiao Tong University through SMC-Young scholar program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejiang Li or Xiaoqin Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Li, D., Luo, A.A. et al. Quantitative Study of Microstructure-Dependent Thermal Conductivity in Mg-4Ce-xAl-0.5Mn Alloys. Metall Mater Trans A 50, 1970–1984 (2019). https://doi.org/10.1007/s11661-019-05136-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05136-w

Navigation