Skip to main content
Log in

Changes in the Microstructure and Mechanical Properties of Railway Wheel Steels as a Result of the Thermal Load Caused by Shoe Braking

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An investigation was carried out to study the effects caused by shoe braking on the microstructure and mechanical properties of ER7, CLASS B, CLASS C, and SANDLOS® wheels as a result of the thermal load. Particular attention was given to cases of exposure to medium and high temperatures, namely from 700 °C to 970 °C, followed by air cooling. Hardness measurements, tensile tests, toughness tests, fatigue crack growth tests, and microstructural observations were carried out on samples extracted from new wheels, with and without heat treatments simulating the microstructural modifications caused by shoe braking. The experiments showed that the hardness, yield strength and ultimate tensile strength of the steels all decrease with the heat-treatment temperature up to 750 °C due to globular pearlite formation. However, after the heat treatment at 970 °C, these properties show a trend inversion, as the globular pearlite no longer appears, while, in some cases, traces of bainite and martensite are observed. On the other hand, the fracture toughness, crack propagation threshold, and rate are not significantly altered by the heat treatments, showing the steels to have a good stability under the thermal loads caused by shoe braking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1. M. Faccoli, A. Ghidini, A. Mazzù: Metall. and Mat. Trans. A, 2018, vol. 49, pp. 4544-4554.

    Article  Google Scholar 

  2. 2. I. Hasegawa, S. Uchida: Japan Railway & Transport Review 1999, vol. 20, pp. 52 - 59.

    Google Scholar 

  3. C. Cruceanu: Train Braking, Reliability and Safety in Railway, Dr. Xavier Perpinya (Ed.), InTech, 2012, pp. 29–74. ISBN: 978-953-51-0451-3

  4. 4. G. J. Moyar, D. H. Stone: Wear, 1991, vol. 144, pp. 117 – 38.

    Article  Google Scholar 

  5. 5. D. Nikas, J. Ahlström, A. Malakizadi: Wear, 2016, vol. 366-367, pp. 407 – 415.

    Article  Google Scholar 

  6. 6. K. Cvetkovski, J. Ahlström, B. Karlsson: Mater. Sci. Technol., 2011, vol. 27, pp. 648 – 654.

    Article  Google Scholar 

  7. 7. J. Ahlström, B. Karlsson: Wear, 1999, vol. 232 (1), pp. 1–14.

    Article  Google Scholar 

  8. 8. J. Ahlström, B. Karlsson: Wear, 1999, vol. 232 (1), pp. 15–24.

    Article  Google Scholar 

  9. 9. S. H. Avner: Introduction to Physical Metallurgy, 2nd ed. India: Tata Mcgraw Hill Pub., 1997.

    Google Scholar 

  10. 10. J. Jergéus: IMechE J. Rail Rapid Transit, 1998, vol. 212, pp. 69 – 79.

    Google Scholar 

  11. 11. K. Handa, Y. Kimura and Y. Mishima: Wear, 2010, vol. 268 (1), pp. 50 – 58.

    Article  Google Scholar 

  12. 12. O. Orringer, D. E. Geay: Theor. Appl. Fract. Mech., 1995, vol. 23, pp. 55 – 65.

    Article  Google Scholar 

  13. 13. T. Vernersson: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(2), pp. 167– 182.

    Google Scholar 

  14. 14. T. Vernersson: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(4), pp. 429 – 442.

    Google Scholar 

  15. 15. M. Petersson, T. Vernesson: Wear, 2002, vol. 253, pp. 301- 307.

    Article  Google Scholar 

  16. 16. K. L. Johnson: Proc. Inst. Mech. Eng., 1989, vol. 203, pp. 151–63.

    Article  Google Scholar 

  17. 17. A. F. Bower: ASME J. Tribol., 1988, 110, pp. 704-11.

    Article  Google Scholar 

  18. K.O. Edel: Querrisse im Radkranz klotzgebremster Güterwagenvollräder, Report, University (FH), Brandenburg, Germany, 1995.

  19. Y.C. Li: Analysis of fatigue phenomena in railway rails and wheels, Handbook of fatigue crack propagation in metallic structures, Amsterdam, Elsevier, 1994, pp. 1497–1537.

  20. 20. M. Faccoli, C. Petrogalli, M. Lancini, A. Ghidini, A. Mazzù: Wear, 2018, vol. 396-397, pp. 146-161.

    Article  Google Scholar 

  21. 21. A. Ghidini, M. Faccoli, A. Mazzù, C. Petrogalli: Ingegneria Ferroviaria, 2018, vol. 9, pp. 729-742.

    Google Scholar 

  22. 22. D. Zeng, L. Lu, Y. Gong, N. Zhang, Y. Gong: Mater. Des., 2016, vol. 92, pp. 998 – 1006.

    Article  Google Scholar 

  23. 23. T. Gladman, I. McIvor, F. Pickering: J. Iron Steel Inst., 1972, vol. 210, pp. 916 – 930.

    Google Scholar 

  24. 24. J. Hyzak and I. Bernstein: Metall. Mater. Trans. A, 1976, vol. 7A (7), pp. 1217 – 1224.

    Article  Google Scholar 

  25. 25. O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran and H. K. Khaira: Mater. Charact., 2001, vol. 46 (5), pp. 347 – 352.

    Article  Google Scholar 

  26. 26. A. Marder and B. Bramfitt: Metall. Mater. Trans. A, 1976, vol. 7A (2), pp. 365 – 372.

    Article  Google Scholar 

  27. 27. D. Zeng, L. Lu, Y. Gong, Y. Zhang, J.Zhang: Wear, 2017, vol. 372-373, pp. 158 – 168.

    Article  Google Scholar 

  28. 28. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, T. Maki: Acta Mater., 2007, vol. 55, pp. 5027 – 5038.

    Article  Google Scholar 

  29. 29. K. Cvetkovski, J. Ahlström, B. Karlsson: Wear, 2011, vol. 271, pp. 382 – 387.

    Article  Google Scholar 

  30. 30. A. Ghidini, M. Diener, J. Schneider: Wheels for freight cars, LRS-Techno Series vol. 3, Lucchini RS, Lovere, Italy, 2010.

    Google Scholar 

  31. 31. A. Ghidini, M. Diener, J. Schneider: Special wheels for mass transit, LRS-Techno Series vol. 7, Lucchini RS, Lovere, Italy, 2014.

    Google Scholar 

  32. 32. H. Soares, T. Zucarelli, M. Vieira, M. Freitas, L. Reis: Procedia Structural Integrity, 2016, vol. 1, pp. 265–272.

    Article  Google Scholar 

  33. T Zucarelli, L MoreiraFilho, H Soares, M Vieira, L Reis (2016) Theor. Appl. Fract. Mech. 85:134–139.

    Article  Google Scholar 

  34. 34. T. Kato, Y. Yamamoto, H. Kato, S. Dedmon, J. Pilch: Eng. Fract. Mech., 2017, vol. 186, pp. 255–267.

    Article  Google Scholar 

  35. 35. M. Diener, A. Ghidini: Mater. Perform. and Charact., 2014, vol. 3 (3), pp. 286 – 304.

    Google Scholar 

  36. J. F. Knott: Fundamentals of Fracture Mechanics, Butterworths, London, 1973.

    Google Scholar 

  37. 37. Y. Park, I. Bernstein: Metall. Trans. A, 1979, vol. 10, pp. 1653–1664.

    Article  Google Scholar 

  38. 38. A. Hohenwarter, A. Taylor, R. Stock, R. Pippan: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1609–1618.

    Article  Google Scholar 

  39. 39. Z. X. Liu, H. C. Gu: J. Mater. Eng. Perform., 2000, vol. 9, pp. 580 – 584.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Paolo Frassi and Bruno Tratta for their support in the experimental activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Faccoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faccoli, M., Ghidini, A. & Mazzù, A. Changes in the Microstructure and Mechanical Properties of Railway Wheel Steels as a Result of the Thermal Load Caused by Shoe Braking. Metall Mater Trans A 50, 1701–1714 (2019). https://doi.org/10.1007/s11661-019-05135-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05135-x

Navigation