Skip to main content
Log in

Quench Sensitivity in a Dispersoid-Containing Al-Mg-Si Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The quench sensitivity of a 6000 series alloy with a high content of dispersoids was studied over a wide range of cooling rate and natural-aging (NA) time. Positron annihilation lifetime spectroscopy, differential scanning calorimetry, and transmission electron microscopy were used to characterize the clustering and precipitation reactions. The alloy showed significant quench sensitivity after short NA (2 and 30 minutes), but the quench sensitivity was lower after long NA (24 hours). The quench sensitivity after the long NA can be accounted for by the solute loss due to the formation of nonhardening β′ precipitates on the dispersoids during cooling from solution treatment. For short NA, however, quenched-in vacancies and modifications to the precipitation sequence also have substantial contributions to the quench sensitivity. The current study provides new insight into the quench sensitivity of 6000 series alloys that contain a high dispersoid density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1. M.J. Starink, B. Milkereit, Y. Zhang, and P.A. Rometsch: Mater. Design, 2015. vol. 88, pp. 958-971.

    Article  Google Scholar 

  2. H. Zoller and A. Ried: Zeitschrift Metallkunde, 1971. vol. 62(5), pp. 354–58.

    Google Scholar 

  3. 3. B. Milkereit and M.J. Starink: Mater. Design, 2015. vol. 76, pp. 117-129.

    Article  Google Scholar 

  4. 4. H. Westengen, L. Auran, and O. Reiso: Aluminium Dusseldorf, 1980. vol. 57(12), pp. 768-775.

    Google Scholar 

  5. 5. L. Lodgaard and N. Ryum: Mater. Sci. Eng. A, 2000. vol. 283(1), pp. 144-152.

    Article  Google Scholar 

  6. 6. H. Hirasawa: Scripta Metallurgica, 1975. vol. 9(9), pp. 955-958.

    Article  Google Scholar 

  7. 7. J.A. Österreicher, M. Kumar, A. Schiffl, S. Schwarz, and G.R. Bourret: Mater. Sci. Eng. A, 2017. vol. 687, pp. 175-180.

    Article  Google Scholar 

  8. 8. H. Zhan and B. Hu: Mater. Char., 2018. vol. 142, pp. 602-612.

    Article  Google Scholar 

  9. 9. K. Buchanan, J. Ribis, J. Garnier, and K. Colas: Philosophical Magazine Letters, 2016. vol. 96(4), pp. 121-131.

    Article  Google Scholar 

  10. 10. D.H. Bratland, O. Grong, H. Shercliff, O.R. Myhr, and S. Tjotta: Acta Mater., 1997. vol. 45(1), pp. 1-22.

    Article  Google Scholar 

  11. 11. K. Strobel, M.A. Easton, L. Sweet, M.J. Couper, and J.-F. Nie: Mater. Trans., 2011. vol. 52(5), pp. 914-919.

    Article  Google Scholar 

  12. 12. L. Lodgaard and N. Ryum: Aluminum Transactions, 2000. vol. 2(2), pp. 267-275.

    Google Scholar 

  13. 13. L. Lodgaard and N. Ryum: Mater. Sci. Tech., 2000. vol. 16(6), pp. 599-604.

    Article  Google Scholar 

  14. 14. L. Lodgaard and N. Ryum: Mater. Sci. Forum, 2000. vol. 331-337, pp. 945-950.

    Article  Google Scholar 

  15. 15. C.L. Liu, Q. Du, N. Parson, and W.J. Poole: Scripta Mater., 2018. vol. 152, pp. 59-63.

    Article  Google Scholar 

  16. J.E. Yoo, A. Shan, I.G. Moon, and S.J. Maeng: J. Mater. Sci., 1999. vol. 34(11), pp. 2679–83.

    Article  Google Scholar 

  17. H. Bomas: Die Abschreckempfindlichkeit von manganhaltigen AlMgSi-Legierungen. Fortschritt-Berichte der VDI-Zeitschriften, Reihe 5: Grund- und Werkstoffe, VDI-Verlag, Düsseldorf, 1980, vol. 47, p. 5.

  18. I. Musulin and O.C. Celliers: Light Met. 1990, Minerals, Metals and Materials Soc (TMS), 1990, pp. 951–54.

  19. 19. O. Lohne and A.L. Dons: Scand. J. Metall., 1983. vol. 12(1), pp. 34-36.

    Google Scholar 

  20. 20. M.S. Remøe, K. Marthinsen, I. Westermann, K. Pederson, J. Røyset, and C. Marioara: Mater. Sci. Eng. A, 2017. vol. 693, pp. 60-72.

    Article  Google Scholar 

  21. 21. C. Flament, J. Ribis, J. Garnier, T. Vandenberghe, J. Henry, and A. Deschamps: Philos. Mag., 2015. vol. 95(8), pp. 906-917.

    Article  Google Scholar 

  22. 22. K. Strobel, M.D.H. Lay, M.A. Easton, L. Sweet, S. Zhu, N. Parson, and A.J. Hill: Materials Characterization, 2016. vol. 111, pp. 43-52.

    Article  Google Scholar 

  23. 23. J.W. Evancho and J.T. Staley: Metall. Trans., 1974. vol. 5(1), pp. 43-47.

    Google Scholar 

  24. 24. D.W. Pashley, M.H. Jacobs, and J.T. Vietz: Philos. Mag., 1967. vol. 16, pp. 51-76.

    Article  Google Scholar 

  25. 25. A. Falahati, P. Lang, and E. Kozeschnik: Mater. Sci. Forum, 2012. vol. 706-709, pp. 317-322.

    Article  Google Scholar 

  26. 26. A. Deschamps, G. Texier, S. Ringeval, and L. Delfaut-Durut: Mater. Sci. Eng. A, 2009. vol. 501(1-2), pp. 133-139.

    Article  Google Scholar 

  27. P. Lang, A. Falahati, M.R. Ahmadi, P. Warczok, E. Povoden-Karadeniz, E. Kozeschnik, and R. Radis: Phase Stability, Diffusion, Kinetics and Their Applications, 2011, pp. 284–91.

  28. 28. M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. Uggowitzer, and S. Pogatscher: Mater. Design, 2016. vol. 107, pp. 257-268.

    Article  Google Scholar 

  29. 29. M. Werinos, H. Antrekowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J.F. Löffler, P. Uggowitzer, and S. Pogatscher: Scripta Mater., 2016. vol. 112, pp. 148-151.

    Article  Google Scholar 

  30. 30. S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S. Gerstl, M.F. Francis, W.A. Curtin, J.F. Löffler, and P. Uggowitzer: Phys. Rev. Letters, 2014. vol. 112, pp. 225701.

    Article  Google Scholar 

  31. 31. F.D. Fischer, J. Svoboda, F. Appel, and E. Kozeschnik: Acta Mater., 2011. vol. 59(9), pp. 3463-3472.

    Article  Google Scholar 

  32. 32. B. Klobes, T.E.M. Staab, M. Haaks, K. Maierand, and I. Wieler: Physica Status Solidi - Rapid Research Letters, 2008. vol. 2(5), pp. 224-226.

    Article  Google Scholar 

  33. 33. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer: Acta Mater., 2011. vol. 59(9), pp. 3352-3363.

    Article  Google Scholar 

  34. 34. H.S. Zurob and H. Seyedrezai: Scripta Mater., 2009. vol. 61(2), pp. 141-144.

    Article  Google Scholar 

  35. 35. R.C. Picu and X. Zhijie: Scripta Mater., 2007. vol. 57(1), pp. 45-48.

    Article  Google Scholar 

  36. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase transformations in matals and alloys. 3rd ed. 2009: CRC Press,

    Google Scholar 

  37. 37. C. Wolverton: Acta Mater., 2007. vol. 55(17), pp. 5867-5872.

    Article  Google Scholar 

  38. 38. H. Seyedrezai, D. Grebennikov, P. Mascher, and H.S. Zurob: Mater. Sci. Eng. A, 2009. vol. 525(1-2), pp. 186-191.

    Article  Google Scholar 

  39. 39. S. Esmaeili, D. Vaumousse, M.W. Zandbergen, W.J. Poole, A. Cerezo, and D.J. Lloyd: Philos. Mag., 2007. vol. 87(25), pp. 3797-3816.

    Article  Google Scholar 

  40. A. Falahati, M.R. Ahmadi, P. Warczok, P. Lang, E. Povoden-Karadeniz, and E. Kozeschnik: Phase Stability, Diffusion, Kinetics and Their Applications, 2011, pp. 292–99.

  41. 41. S. Pogatscher, E. Kozeschnik, H. Antrekowitsch, M. Werinos, S. Gerstl, J.F. Löffler, and P. Uggowitzer: Scripta Mater., 2014. vol. 89, pp. 53-56.

    Article  Google Scholar 

  42. P. Dumitraschkewitz, S. Gerstl, L. Stephenson, P. Uggowitzer, and S. Pogatscher: Adv. Eng. Mater., 2018. vol., pp. 1800255.

    Article  Google Scholar 

  43. 43. J. Banhart, M. Liu, Y. Yong, Z. Liang, C.S.T. Chang, M. Elsayed, and M.D.H. Lay: Physica B: Condensed Matter, 2012. vol. 407(14), pp. 2689-2696.

    Article  Google Scholar 

  44. M.D.H. Lay, H.S. Zurob, C.R. Hutchinson, T.J. Bastow, and A.J. Hill: Metall. Mater. Trans. A, 2012. vol. 43A, pp. 4507-13.

    Article  Google Scholar 

  45. 45. J.F. Nie, B.C. Muddle, H.I. Aaronson, S.P. Ringer, and J.P. Hirth: Metall. Mater. Trans. A, 2002. vol. 33A(6), pp. 1649-1658.

    Article  Google Scholar 

  46. 46. H.W. Zandbergen, S.J. Andersen, and J. Jansen: Science, 1997. vol. 277(5330), pp. 1221-1225.

    Article  Google Scholar 

  47. 47. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso: Acta Mater., 1998. vol. 46(9), pp. 3283-3298.

    Article  Google Scholar 

  48. 48. K. Matsuda, S. Ikeno, and S. Tada: J. Jpn. Inst. Met., 1993. vol. 57(10), pp. 1107-1113.

    Article  Google Scholar 

  49. 49. M.H. Jacobs: Philos. Mag., 1972. vol. 26(1), pp. 1-13.

    Article  Google Scholar 

  50. 50. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen: Acta Mater., 2007. vol. 55(11), pp. 3815-3823.

    Article  Google Scholar 

  51. 51. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998. vol. 46, pp. 3893-3904.

    Article  Google Scholar 

  52. T. Saito, E.A. Mørtsell, S. Wenner, C.D. Marioara, S.J. Andersen, J. Friis, K. Matsuda, and R. Holmestad: Adv. Engng. Mater., 2018. vol. 20(7), pp. 1800125.

    Article  Google Scholar 

  53. 53. K. Matsuda, V. Sakaguchi, V. Miyata, V. Uetani, T. Sato, A. Kamio, and S. Ikeno: J. Mater. Sci., 2000. vol. 35(1), pp. 179-189.

    Article  Google Scholar 

  54. 54. S. Wenner, L. Jones, C.D. Marioara, and R. Holmestad: Micron, 2017. vol. 96, pp. 103-111.

    Article  Google Scholar 

  55. 55. M.J. Starink: International Materials Reviews, 2004. vol. 49(3-4), pp. 191-226.

    Article  Google Scholar 

  56. J.M. Zuo and J.C. Mabon: Microsc. Microanal., 2004, vol. 10, pp. 1000–1

    Article  Google Scholar 

  57. 57. R. Ferragut, A. Somoza, and A. Dupasquier: Journal of Physics: Condensed Matter, 1998. vol. 10(17), pp. 3903-3918.

    Article  Google Scholar 

  58. 58. G. Dlubek: Material Science Forum, 1987. vol. 13-14, pp. 11-32.

    Article  Google Scholar 

  59. J. Banhart, M.D.H. Lay, C.S.T. Chang, and A.J. Hill: Phys. Rev. B: Condens. Matter, 2011. vol. 83(1), pp. 014101.

    Article  Google Scholar 

  60. A. Somoza, A. Dupasquier, I.J. Polmear, P. Folegati, and R. Ferragut: Physical Review B (Condensed Matter), 2000. vol. 61(21), pp. 14454.

    Article  Google Scholar 

  61. 61. J. Royset, T. Stene, J.A. Saeter, and O. Reiso: Mater. Sci. Forum, 2006. vol. 519-521, pp. 239-244.

    Article  Google Scholar 

  62. 62. D.W. Pashley, J.W. Rhodes, and A. Sendorek: J. Inst. Metals, 1966. vol. 94, pp. 41-49.

    Google Scholar 

  63. 63. A. Poznak, V. Thole, and P. Sanders: Metals, 2018. vol. 8, pp. 309.

    Article  Google Scholar 

  64. B. Milkereit, in Fakultät für Maschinenbau und Schiffstechnik. 2010, Universität Rostock: Rostock. pp. 178.

    Google Scholar 

  65. 65. M.J. Starink: Thermochim Acta, 2003. vol. 404, pp. 163-176.

    Article  Google Scholar 

  66. M.J. Starink: J. Alloys Compd., 2007. vol. 433(1-2), pp. 4-6.

    Article  Google Scholar 

  67. 67. A. Dupasquier, G. Kogel, and A. Somoza: Acta Mater., 2004. vol. 52(16), pp. 4707-4726.

    Article  Google Scholar 

  68. 68. T.E.M. Staab, B. Klobes, I. Kohlbach, B. Korff, M. Haaks, E. Dudzik, and K. Maier: J. Phys: Conf. Series, 2011. vol. 265, pp. 012108.

    Article  Google Scholar 

  69. J.M. Campillo Robles, E. Ogando, and F. Plazaola: Int. Workshop Positron Stud. Defects, IOP Publishing Ltd., 2011, pp. 1–10.

  70. 70. J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, and A.J. Hill: Adv. Engng. Mater., 2010. vol. 12(7), pp. 559-571.

    Article  Google Scholar 

  71. 71. C.S.T. Chang and J. Banhart: Metall. Mater. Trans. A, 2010. vol. 42(7), pp. 1960-1964.

    Google Scholar 

  72. 72. B. Milkereit, N. Wanderka, C. Schick, and O. Kessler: Mater. Sci. Eng. A, 2012. vol. 550, pp. 87-96.

    Article  Google Scholar 

  73. J.T. Staley: Mater. Sci. Tech., 1987. vol. 3(11), pp. 923–35.

    Article  Google Scholar 

  74. 74. C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart: Ultramicroscopy, 2009. vol. 109(5), pp. 585-592.

    Article  Google Scholar 

  75. 75. A. Serizawa, S. Hirosawa, and T. Sato: Metall. Mater. Trans. A, 2008. vol. 39(2), pp. 243-251.

    Article  Google Scholar 

  76. 76. M. Murayama and K. Hono: Acta Mater., 1999. vol. 47(5), pp. 1537-1548.

    Article  Google Scholar 

  77. 77. Y.X. Lai, B.C. Jiang, C.H. Liu, Z.K. Chen, C.L. Wu, and J.H. Chen: J. Alloys Compd., 2017. vol. 701, pp. 94-98.

    Article  Google Scholar 

Download references

Acknowledgments

The CAST Co-operative Research Centre was established under, and was supported in part by, the Australian Government’s Co-operative Research Centre Program. The Monash Centre for Electron Microscopy is thanked for allowing access to its facilities. Mr. Andy Yob of CSIRO is thanked for making available the samples used in this study. ME also gratefully acknowledges the support of the ARC Training Centre for Lightweight Automotive Structures (Project Number IC160100032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Easton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobel, K., Easton, M.A., Lay, M.D.H. et al. Quench Sensitivity in a Dispersoid-Containing Al-Mg-Si Alloy. Metall Mater Trans A 50, 1957–1969 (2019). https://doi.org/10.1007/s11661-019-05130-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05130-2

Navigation