Skip to main content
Log in

Rationalizing the Grain Size Dependence of Strength and Strain-Rate Sensitivity of Nanocrystalline fcc Metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low strain-rate sensitivity (SRS) of nanocrystalline metals measured by experiments often leads to the claim that grain boundary (GB)-mediated plasticity is insignificant, contrary to molecular dynamics simulation results. Here, we develop an crystal plasticity model to rationalize the important role of GB-mediated plasticity on the rate-controlling deformation of nano-grained (NG) and ultrafine-grained (UFG) face-centered-cubic (fcc) metals. Important phenomena such as the GB strengthening, the stress saturation, and the evolution of SRS are well captured. We show that the main reason for the low SRS measured experimentally in NG metals (several tens of nm) is the dominance of the localized dislocation activities over the GB process on the overall plasticity. Such localization of dislocation process may provide a reason for the formation of shear bands/zones in NG and UFG fcc metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Armstrong, Metal. Mater. Trans. B 1B(5), 1169–1176 (1970)

    Article  Google Scholar 

  2. J. Schiøtz, K. W. Jacobsen, Science 301(5638), 1357–1359 (2003)

    Article  Google Scholar 

  3. Z. Shan, E. Stach, J. Wiezorek, J. Knapp, D. Follstaedt, S. Mao, Science 305(5684), 654–657 (2004)

    Article  Google Scholar 

  4. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304(5669), 422–426 (2004)

    Article  Google Scholar 

  5. P. G. Sanders, J. Eastman, J. Weertman, Acta Mater. 45(10), 4019–4025 (1997)

    Article  Google Scholar 

  6. Y. Champion, C. Langlois, S. Guérin-Mailly, P. Langlois, J.-L. Bonnentien, M. J. Hÿtch, Science 300(5617), 310–311 (2003)

    Article  Google Scholar 

  7. E. Hall, . Proc. Phys. Soc. Sect. B 64(9), 747 (1951)

    Article  Google Scholar 

  8. N. Petch, J. Iron Steel Inst., 174, 25–28 (1953)

    Google Scholar 

  9. A. Lasalmonie, J. Strudel, J. Mater. Sci. 21(6), 1837–1852 (1986)

    Article  Google Scholar 

  10. G. Saada, Mater. Sci. Eng. A 400, 146–149 (2005)

    Article  Google Scholar 

  11. U. Kocks, H. Mecking, Prog. Mater. Sci. 48(3), 171–273 (2003)

    Article  Google Scholar 

  12. K. Sieradzki, A. Rinaldi, C. Friesen, P. Peralta, Acta Mater. 54(17), 4533–4538 (2006)

    Article  Google Scholar 

  13. J. Schiøtz, F. D. Di Tolla, K. W. Jacobsen, Nature 391(6667), 561 (1998)

    Article  Google Scholar 

  14. H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Phys. Rev. B 60(1), 22 (1999)

    Article  Google Scholar 

  15. B. Zhu, R. Asaro, P. Krysl, K. Zhang, J. Weertman, Acta Mater. 54(12), 3307–3320 (2006)

    Article  Google Scholar 

  16. Y. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherer, H.-J. Fecht, Acta Mater. 57(11), 3391–3401 (2009)

    Article  Google Scholar 

  17. Y. Wang, E. Ma, Appl. Phys. Lett. 83(15), 3165–3167 (2003)

    Article  Google Scholar 

  18. T. Zhu, J. Li, A. Samanta, H. G. Kim, S. Suresh, Proceedings of the National Academy of Sciences. 104(9), 3031–3036 (2007)

    Article  Google Scholar 

  19. R. Carreker Jr, W. Hibbard Jr, Acta Metall. 1(6), 654–663 (1953)

    Article  Google Scholar 

  20. Y. Wang, A. Hamza, E. Ma, Acta Mater. 54(10), 2715–2726 (2006)

    Article  Google Scholar 

  21. J. May, H. Höppel, M. Göken, Scripta Mater. 53(2), 189–194 (2005)

    Article  Google Scholar 

  22. L. Lu, S. Li, K. Lu, Scripta Mater. 45(10), 1163–1169 (2001)

    Article  Google Scholar 

  23. J. Chen, L. Lu, K. Lu, Scripta Mater. 54(11), 1913–1918 (2006)

    Article  Google Scholar 

  24. R. J. Asaro, S. Suresh, Acta Mater. 53(12), 3369–3382 (2005)

    Article  Google Scholar 

  25. R. J. Asaro, A. Needleman, Acta Metall. 33(6), 923–953 (1985)

    Article  Google Scholar 

  26. Z. Jiang, X. Liu, G. Li, Q. Jiang, J. Lian, Appl. Phys. Lett. 88(14), 143115 (2006)

    Article  Google Scholar 

  27. B. Zhu, R. Asaro, P. Krysl, R. Bailey, Acta Mater. 53(18), 4825–4838 (2005)

    Article  Google Scholar 

  28. E. Gürses, T. El Sayed, Journal of the Mechanics and Physics of Solids. 59(3), 732–749 (2011)

    Article  Google Scholar 

  29. G. Lemoine, L. Delannay, H. Idrissi, M.-S. Colla, T. Pardoen, Acta Mater. 111, 10–21 (2016)

    Article  Google Scholar 

  30. F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Acta Materialia. 50(15), 3957–3970 (2002)

    Article  Google Scholar 

  31. H. Van Swygenhoven, Science 296(5565), 66–67 (2002)

    Article  Google Scholar 

  32. S. Cheng, E. Ma, Y. Wang, L. Kecskes, K. Youssef, C. Koch, U. Trociewitz, K. Han, Acta Mater. 53(5), 1521–1533 (2005)

    Article  Google Scholar 

  33. Y. Wei, A. F. Bower, H. Gao, Acta Mater. 56(8), 1741–1752 (2008)

    Article  Google Scholar 

  34. S. Nemat-Nasser, Y. Li, Acta Mater. 46(2), 565–577 (1998)

    Article  Google Scholar 

  35. M. Soare, W. Curtin, Acta Mater. 56(15), 4046–4061 (2008)

    Article  Google Scholar 

  36. K. K. Chawla, M. Meyers, Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, 1999)

    Google Scholar 

  37. T. Zhu, A. Bushby, D. Dunstan, Mater. Technol. 23(4), 193–209 (2008)

    Article  Google Scholar 

  38. D. Dunstan, A. Bushby, Int. J. Plast. 40, 152–162 (2013)

    Article  Google Scholar 

  39. A. S. Khan, B. Farrokh, L. Takacs, J. Mater. Sci. 43(9), 3305–3313 (2008)

    Article  Google Scholar 

  40. M. Legros, B. Elliott, M. Rittner, J. Weertman, K. Hemker, Philos. Mag. A 80(4), 1017–1026 (2000)

    Article  Google Scholar 

  41. R. S. Iyer, C. A. Frey, S. Sastry, B. Waller, W. Buhro, Mater. Sci. Eng. A 264(1-2), 210–214 (1999)

    Article  Google Scholar 

  42. V. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer: Acta Metall. Mater. 42(10), 3539–3544 (1994)

    Article  Google Scholar 

  43. K. M. Youssef, R. O. Scattergood, K. Linga Murty, C. C. Koch, Applied physics letters. 85(6), 929–931 (2004)

    Article  Google Scholar 

  44. Y. Wang, K. Wang, D. Pan, K. Lu, K. Hemker, E. Ma, Scripta Mater. 48(12), 1581–1586 (2003)

    Article  Google Scholar 

  45. L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu, S. Suresh, Acta Mater. 53(7), 2169–2179 (2005)

    Article  Google Scholar 

  46. D. Das, A. Samanta, P. Chattopadhyay: Mater. Manuf. Process. 21(7), 698–702 (2006)

    Article  Google Scholar 

  47. G. Fougere, J. Weertman, R. Siegel, S. Kim, Scripta Metall. Mater. 26(12), 1879–1883 (1992)

    Article  Google Scholar 

  48. Z. Cordero, B. Knight, C. Schuh, Int. Mater. Rev. 61(8), 495–512 (2016)

    Article  Google Scholar 

  49. M. Dollár, A. Dollár: J. Mater. Process. Technol. 157, 491–495 (2004)

    Article  Google Scholar 

  50. F. Yin, G. J. Cheng, R. Xu, K. Zhao, Q. Li, J. Jian, S. Hu, S. Sun, L. An, Q. Han, Scripta Mater. 155, 26–31 (2018)

    Article  Google Scholar 

  51. E. Ma: Scripta Mater. 49(7), 663–668 (2003)

    Article  Google Scholar 

  52. Q. Wei, S. Cheng, K. Ramesh, E. Ma, Mater. Sci. Eng. A 381(1-2), 71–79 (2004)

    Article  Google Scholar 

  53. G. Gray Iii, T. Lowe, C. Cady, R. Valiev, I. Aleksandrov, Nanostructured Materials. 9(1-8), 477–480 (1997)

    Article  Google Scholar 

  54. M. Zehetbauer, V. Seumer, Acta Metall. Mater. 41(2), 577–588 (1993)

    Article  Google Scholar 

  55. W. Bochniak, Acta Metall. Mater. 43(1), 225–233 (1995)

    Google Scholar 

  56. P. Follansbee, U. Kocks, Acta Metall. 36(1), 81–93 (1988)

    Article  Google Scholar 

  57. Y. Li, X. Zeng, W. Blum, Acta Mater. 52(17), 5009–5018 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

M.X. Huang acknowledges the financial support from National Natural Science Foundation of China (Nos. U1764252, U1560204), National Key Research and Development Program of China (No. 2017YFB0304401) and Research Grants Council of Hong Kong (Nos. 17255016, 17203014, C7025-16G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Manuscript submitted November 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.Z., Huang, M.X. Rationalizing the Grain Size Dependence of Strength and Strain-Rate Sensitivity of Nanocrystalline fcc Metals. Metall Mater Trans A 50, 1943–1948 (2019). https://doi.org/10.1007/s11661-019-05112-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05112-4

Navigation