Skip to main content
Log in

Retardation of Small Creep–Fatigue Crack in Gr. 91 Steel Through the Combined Effects of Stress Relaxation, Microstructural Evolution, and Oxidation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This investigation reports an unusual effect of hold time (up to 10 seconds) on retardation in the growth of creep–fatigue small cracks at 550 °C in Grade 91 steel. The observed phenomenon was interpreted by elucidating multiple processes that are active in the plastic zone at the crack tip. To this effect, microstructural and mechanical responses of the crack tip plastic zone were compared with the mechanical and microstructural responses during low cycle fatigue/creep–fatigue. It is proposed that the stress relaxation that occurs during the hold time can reduce the stress intensity in the plastic zone of crack tip thus, contributing to retardation in the small crack growth rate. Aside from stress relaxation, stress intensity in the crack tip can be further reduced by the phenomenon of cyclic softening that occurs because of plasticity-induced microstructural coarsening. Separately, the contribution of oxidation-induced crack tip shielding is also considered to explain the observed effects of hold time on crack growth rates. Taken together, a combination of stress relaxation, enhanced rate of cyclic softening, and higher degree of oxidation with the introduction of a hold time is demonstrated to be responsible for reduction in the crack growth under creep–fatigue conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. L. Klueh and A. T. Nelson, J. Nucl. Mater. 2007, vol. 371, pp. 37–52.

    Article  CAS  Google Scholar 

  2. R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. Van der Schaaf and M. Victoria, J. Nucl. Mater. 2002, vol. 307, pp. 455–65.

    Article  Google Scholar 

  3. F. Abe, Sci. Technol. Adv. Mater. 2008, vol. 9, p. 013002.

    Article  Google Scholar 

  4. S. B. Narasimhachary and A. Saxena, Int. J. Fatigue 2013, vol. 56, pp. 106–13.

    Article  CAS  Google Scholar 

  5. A. Stoppato, A. Mirandola, G. Meneghetti and E. L. Casto, Energy 2012, vol. 37, pp. 228–36.

    Article  Google Scholar 

  6. T. P. Farragher, S. Scully, N. P. O’Dowd and S. B. Leen, Int. J. Fatigue 2013, vol. 49, pp. 50–61.

    Article  Google Scholar 

  7. L. Cui and P. Wang, Int. J. Fatigue 2014, vol. 59, pp. 129–36.

    Article  CAS  Google Scholar 

  8. B. Fournier, F. Dalle, M. Sauzay, J. Longour, M. Salvi, C. Caës, I. Tournié, P.-F. Giroux and S.-H. Kim, Mater. Sci. Eng. A 2011, vol. 528, pp. 6934–45.

    Article  CAS  Google Scholar 

  9. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, L. Allais, I. Tournie and A. Pineau, Metall. Mater. Trans. A 2009, vol. 40A, pp. 321–29.

    Article  CAS  Google Scholar 

  10. B. Fournier, M. Sauzay, F. Barcelo, E. Rauch, A. Renault, T. Cozzika, L. Dupuy and A. Pineau, Metall. Mater. Trans. A 2009, vol. 40A, pp. 330–41.

    Article  CAS  Google Scholar 

  11. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau and A. Pineau, Int. J. Fatigue 2008, vol. 30, pp. 649–62.

    Article  CAS  Google Scholar 

  12. R. P. Skelton and D. Gandy, Mater. High Temp. 2008, vol. 25, pp. 27–54.

    Article  CAS  Google Scholar 

  13. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, J. Man, O. Gillia and P. Lemoine, Int. J. Fatigue 2008, vol. 30, pp. 1797–1812.

    Article  CAS  Google Scholar 

  14. T. Ogata and M. Yamamoto, JSME Int. J. Ser. A 1997, vol. 40, pp. 283–89.

    Article  Google Scholar 

  15. N. Ab Razak, C. M. Davies and K. M. Nikbin, Eng. Fail. Anal. 2018, vol. 84, pp. 320–30.

    Article  CAS  Google Scholar 

  16. M. Jono and A. Sugeta, Fatigue Fract. Eng. Mater. Struct. 1996, vol. 19, pp. 165–74.

    Article  CAS  Google Scholar 

  17. Y. Uematsu, M. Akita, M. Nakajima and K. Tokaji, Int. J. Fatigue 2008, vol. 30, pp. 642–48.

    Article  CAS  Google Scholar 

  18. A. Shyam, J. E. Allison and J. W. Jones, Acta Mater. 2005, vol. 53, pp. 1499–1509.

    Article  CAS  Google Scholar 

  19. A. Shyam, J. E. Allison, C. J. Szczepanski, T. M. Pollock and J. W. Jones, Acta Mater. 2007, vol. 55, pp. 6606–16.

    Article  CAS  Google Scholar 

  20. A. Shyam, P. Blau, T. Jordan and N. Yang, Fatigue Fract. Eng. Mater. Struct. 2014, vol. 37, pp. 368–79.

    Article  Google Scholar 

  21. M. J. Caton and S. K. Jha, Int. J. Fatigue 2010, vol. 32, pp. 1461–72.

    Article  CAS  Google Scholar 

  22. Z. Chen, A. Shyam, J. Huang, R. F. Decker, S. E. LeBeau and C. J. Boehlert, Metall. Mater. Trans. A 2013, vol. 44A, pp. 1045–58.

    Article  Google Scholar 

  23. J. C. Newman and I. S. Raju, Eng. Fract. Mech. 1981, vol. 15, pp. 185–92.

    Article  Google Scholar 

  24. P. Paris and F. Erdogan, J. Basic Eng. 1963, vol. 85, pp. 528–33.

    Article  CAS  Google Scholar 

  25. S. I. Wright, M. M. Nowell and D. P. Field, Microsc. Microanal. 2011, vol. 17, pp. 316–29.

    Article  CAS  Google Scholar 

  26. K. Sadananda and P. Shahinian, J. Mater. Sci. 1978, vol. 13, pp. 2347–57.

    Article  CAS  Google Scholar 

  27. N. Adefris, A. Saxena and D. L. McDowell, Fatigue Fract. Eng. Mater. Struct. 1996, vol. 19, pp. 401–11.

    Article  CAS  Google Scholar 

  28. X. Liu, B. Kang and K.-M. Chang, Mater. Sci. Eng. A 2003, vol. 340, pp. 8–14.

    Article  Google Scholar 

  29. K. V. Jata, D. Maxwell and T. Nicholas, J. Eng. Mater. Technol. 1994, vol. 116, pp. 45–53.

    Article  CAS  Google Scholar 

  30. T. Fischer and B. Kuhn, Int. J. Fatigue 2018, vol. 112, pp. 165–72.

    Article  CAS  Google Scholar 

  31. N. S. Shah, S. Sunil and A. Sarkar, Metall. Mater. Trans. A 2018, vol. 49A, pp. 2644–53.

    Article  Google Scholar 

  32. M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier and A. Pineau, Mater. Sci. Eng. A 2005, vol. 400, pp. 241–44.

    Article  Google Scholar 

  33. C. G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.-F. Gourgues-Lorenzon and W. Bendick, Mater. Sci. Eng. A 2010, vol. 527, pp. 4062–69.

    Article  Google Scholar 

  34. M. Sauzay, B. Fournier, M. Mottot, A. Pineau and I. Monnet, Mater. Sci. Eng. A 2008, vol. 483, pp. 410–14.

    Article  Google Scholar 

  35. B. Fournier, M. Sauzay, C. Caës, M. Mottot, M. Noblecourt and A. Pineau, Mater. Sci. Eng. A 2006, vol. 437, pp. 197–211.

    Article  Google Scholar 

  36. A. Shyam and W. W. Milligan, Acta Mater. 2004, vol. 52, pp. 1503–13.

    Article  CAS  Google Scholar 

  37. S. Suresh, G. F. Zamiski and R. O. Ritchie, Metall. Trans. A 1981, vol. 12, pp. 1435–43.

    Article  CAS  Google Scholar 

  38. W.-G. Kim, J.-Y. Park, S.-J. Kim and J. Jang, Mater. Des. 2013, vol. 51, pp. 1045–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge C.S. Hawkins, T. Lowe, and T. Jordan for assistance with the experimental work. They also thank Y. Yamamoto, Xinghua Yu, and B.A. Pint for reviewing the manuscript. This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, under the Crosscutting Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shyam.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted April 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahl, S., Dryepondt, S., Allard, L.F. et al. Retardation of Small Creep–Fatigue Crack in Gr. 91 Steel Through the Combined Effects of Stress Relaxation, Microstructural Evolution, and Oxidation. Metall Mater Trans A 49, 6110–6121 (2018). https://doi.org/10.1007/s11661-018-4947-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4947-y

Navigation