Skip to main content
Log in

Prediction of Thermodynamic Properties of Mo-Si-B Alloys from First-Principles Calculations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Many technological applications such as heat treatment processes and their computational modeling and simulation require knowledge of the thermodynamic properties of the phases involved. Depending on the alloy system, experimental methods to obtain high-accuracy values especially for specific heat capacity of ultra-high-melting alloys will require high-temperature equipment, which is expensive and restricted in terms of the maximum temperature. We present a method for obtaining these values from first-principles (density functional theory) calculations and compare this method to experimental data of Mo-based alloys. The ab initio approach is based on the computation of elastic properties, which are then used to fit a Birch–Murnaghan equation of state to solve the Debye model. Experimental values are obtained by differential scanning calorimetry of single-phase and three-phase samples, from which individual phase properties are reconstructed using a phase mixing approach. It can be concluded that all methods employed agree within reasonable limits of accuracy, showing the validity of the first-principles approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Jackson, D. Olson, B. Mishra, and A. Lasseigne-Jackson: International Journal of Hydrogen Energy, 2007, vol. 32, pp. 3789–3796.

    Article  CAS  Google Scholar 

  2. S. Beale: Phil. Trans. R. Soc. A, 2012, vol. 370, pp. 4130–4153.

    Article  Google Scholar 

  3. D.M. Dimiduk and J.H. Perepezko: Mrs Bulletin, 2003, vol. 28, pp. 639–645.

    Article  CAS  Google Scholar 

  4. B. Gorr, S. Burk, V. Trindade, and H.-J. Christ: Oxidation of metals, 2010, vol. 74, pp. 239–253.

    Article  CAS  Google Scholar 

  5. B. Gorr and H.J. Christ: in Advanced Materials Research, vol. 278, Trans Tech Publications, Zürich, 2011, pp. 545–550.

    Google Scholar 

  6. D. Mukherji, J. Rösler, M. Krüger, M. Heilmaier, M.-C. Bölitz, R. Völkl, U. Glatzel, and L. Szentmiklósi: Scripta Materialia, 2012, vol. 66, pp. 60–63.

    Article  CAS  Google Scholar 

  7. B. Bewlay, M. Jackson, P. Subramanian, and J.-C. Zhao: Metallurgical and Materials Transactions A, 2003, vol. 34, pp. 2043–2052.

    Article  CAS  Google Scholar 

  8. B. Bewlay, M. Jackson, J.-C. Zhao, P. Subramanian, M. Mendiratta, and J. Lewandowski: MRS bulletin, 2003, vol. 28, pp. 646–653.

    Article  CAS  Google Scholar 

  9. C. Seemüller, T. Hartwig, M. Mulser, N. Adkins, M. Wickins, and M. Heilmaier: JOM, 2014, vol. 66, pp. 1900–1907.

    Article  Google Scholar 

  10. D. Berczik: US Patents No. 5,595,616 and 5,693,156, East Hartford United Technologies Corp, 1997.

  11. P. Jéhanno, M. Heilmaier, H. Saage, M. Böning, H. Kestler, J. Freudenberger, and S. Drawin: Materials Science and Engineering: A, 2007, vol. 463, pp. 216–223.

    Article  Google Scholar 

  12. T. Parthasarathy, M. Mendiratta, and D. Dimiduk: Acta Materialia, 2002, vol. 50, pp. 1857–1868.

    Article  CAS  Google Scholar 

  13. M. Mendiratta, T. Parthasarathy, and D. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–232.

    Article  CAS  Google Scholar 

  14. K. Ito, M. Kumagai, T. Hayashi, and M. Yamaguchi: Scripta materialia, 2003, vol. 49, pp. 285–290.

    Article  CAS  Google Scholar 

  15. P. Jain, A. Alur, and K. Kumar: Scripta Materialia, 2006, vol. 54, pp. 13–17.

    Article  CAS  Google Scholar 

  16. K.S. Kumar: Fatigue Response of Mo-Si-B Alloys, Brown University, Division of Engineering, 2005.

    Google Scholar 

  17. K. Yoshimi, J. Nakamura, D. Kanekon, S. Yamamoto, K. Maruyama, H. Katsui, and T. Goto: JOM, 2014, vol. 66, pp. 1930–1938.

    Article  CAS  Google Scholar 

  18. D. Schliephake, M. Azim, K. von Klinski-Wetzel, B. Gorr, H.-J. Christ, H. Bei, E.P. George, and M. Heilmaier: Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 1102–1111.

    Article  Google Scholar 

  19. G. Hasemann, I. Bogomol, D. Schliephake, P. Loboda, and M. Krüger: Intermetallics, 2014, vol. 48, pp. 28–33.

    Article  CAS  Google Scholar 

  20. P. Jain and K. Kumar: Acta Materialia, 2010, vol. 58, pp. 2124–2142.

    Article  CAS  Google Scholar 

  21. J. Schneibel: Intermetallics, 2003, vol. 11, pp. 625–632.

    Article  CAS  Google Scholar 

  22. G. Hasemann, D. Kaplunenko, I. Bogomol, and M. Krüger: JOM, 2016, vol. 68, pp. 2847–2853.

    Article  CAS  Google Scholar 

  23. J.H. Schneibel, M. Kramer, Ö. Ünal, and R.N. Wright: Intermetallics, 2001, vol. 9, pp. 25–31.

    Article  CAS  Google Scholar 

  24. R. Mitra: International Materials Reviews, 2006, vol. 51, pp. 13–64.

    Article  CAS  Google Scholar 

  25. J.A. Lemberg, M.R. Middlemas, T. Weingärtner, B. Gludovatz, J.K. Cochran, and R.O. Ritchie: Intermetallics, 2012, vol. 20, pp. 141–154.

    Article  CAS  Google Scholar 

  26. J. Kruzic, J. Schneibel, and R. Ritchie: Scripta Materialia, 2004, vol. 50, pp. 459–464.

    Article  CAS  Google Scholar 

  27. J. Kruzic, J. Schneibel, and R. Ritchie: Metallurgical and Materials Transactions A, 2005, vol. 36, pp. 2393–2402.

    Article  CAS  Google Scholar 

  28. M. Krüger, P. Jain, K. Kumar, and M. Heilmaier: Intermetallics, 2014, vol. 48, pp. 10–18.

    Article  Google Scholar 

  29. C. Rawn, J. Schneibel, C. Hoffmann, and C. Hubbard: Intermetallics, 2001, vol. 9, pp. 209–216.

    Article  CAS  Google Scholar 

  30. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.

    Article  CAS  Google Scholar 

  31. C. Fu and J.. Schneibel: Acta Materialia, 2003, vol. 51, pp. 5083–5092.

    Article  CAS  Google Scholar 

  32. F. Chu, D.. Thoma, K. McClellan, P. Peralta, and Y. He: Intermetallics, 1999, vol. 7, pp. 611–620.

    Article  CAS  Google Scholar 

  33. K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada: Intermetallics, 2003, vol. 11, pp. 787–794.

    Article  CAS  Google Scholar 

  34. K. Ihara, K. Ito, K. Tanaka, and M. Yamaguchi: Materials Science and Engineering: A, 2002, vol. 329, pp. 222–227.

    Article  Google Scholar 

  35. S. Aryal, M. Gao, L. Ouyang, P. Rulis, and W. Ching: Intermetallics, 2013, vol. 38, pp. 116–125.

    Article  CAS  Google Scholar 

  36. C. Kittel: Introduction to Solid State Physics, 8th edn., Wiley, New York,, 2004.

    Google Scholar 

  37. R.A. Serway, C.J. Moses, C.A. Moyer: Modern Physics. Cengage Learning, Inc, ‎Boston, 2004.

    Google Scholar 

  38. S.-Y. Zhong, Z. Chen, M. Wang, and D. Chen: Eur. Phys. J. B. https://doi.org/10.1140/epjb/e2015-60383-y.

  39. O.L. Anderson: Journal of Physics and Chemistry of Solids, 1963, vol. 24, pp. 909–917.

    Article  CAS  Google Scholar 

  40. W. Voigt: Lehrbuch Der Kristallphysik: Mit Ausschluß d. Kristalloptik, Teubner, Leipzig u.a., 1910.

  41. O.H. Nielsen and R.M. Martin: Physical Review B, 1985, vol. 32, pp. 3780–3791.

    Article  CAS  Google Scholar 

  42. M.F.-X. Wagner and W. Windl: Scripta Materialia, 2009, vol. 60, pp. 207–210.

    Article  CAS  Google Scholar 

  43. M.F.-X. Wagner and W. Windl: Acta Materialia, 2008, vol. 56, pp. 6232–6245.

    Article  CAS  Google Scholar 

  44. R. Hill: Proceedings of the Royal Society of London A, 1952, vol. 65, pp. 349–354.

    Article  Google Scholar 

  45. M. Blanco, E. Francisco, and V. Luaña: Computer Physics Communications, 2004, vol. 158, pp. 57–72.

    Article  CAS  Google Scholar 

  46. A. Otero-de-la-Roza and V. Luaña: Computer Physics Communications, 2011, vol. 182, pp. 1708–1720.

    Article  CAS  Google Scholar 

  47. A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña: Computer Physics Communications, 2011, vol. 182, pp. 2232–2248.

    Article  CAS  Google Scholar 

  48. A. Otero-de-la-Roza, and V. Luaña: Comput. Theor. Chem., 2011, vol. 975, pp. 111–115.

    Article  CAS  Google Scholar 

  49. A. Otero-de-la-Roza and V. Luaña: Physical Review B, 2011, vol. 84, p. 024109.

    Article  Google Scholar 

  50. A. Otero-de-la-Roza and V. Luaña: Physical Review B, 2011, vol. 84, p. 184103.

    Article  Google Scholar 

  51. O. Schütt, P. Messmer, J. Hutter, and J. VandeVondele: Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics, Wiley, New York, 2016, pp. 173–190.

    Book  Google Scholar 

  52. U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter: Parallel Computing, 2014, vol. 40, pp. 47–58.

    Article  Google Scholar 

  53. J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele: Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, vol. 4, pp. 15–25.

    Article  CAS  Google Scholar 

  54. M. Krack: Theor. Chem. Acc., 2005, vol. 114, pp. 145–152.

    Article  CAS  Google Scholar 

  55. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter: Computer Physics Communications, 2005, vol. 167, pp. 103–128.

    Article  CAS  Google Scholar 

  56. M. Frigo and S.G. Johnson: Proceedings of the IEEE, 2005, vol. 93, pp. 216–231.

    Article  Google Scholar 

  57. C. Hartwigsen, S. Goedecker, and J. Hutter: Physical Review B, 1998, vol. 58, pp. 3641–3662.

    Article  CAS  Google Scholar 

  58. G. Lippert, J. Hutter, and M. Parrinello: Molecular Physics, 1997, vol. 92, pp. 477–488.

    Article  CAS  Google Scholar 

  59. J. VandeVondele and J. Hutter: The Journal of chemical physics, 2007, vol. 127, p. 114105.

    Article  Google Scholar 

  60. S. Goedecker, M. Teter, and J. Hutter: Physical Review B, 1996, vol. 54, pp. 1703–1710.

    Article  CAS  Google Scholar 

  61. D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jéhanno, B. Skrotzki, and H. Saage: Materials Science and Engineering: A, 2007, vol. 463, pp. 107–114.

    Article  Google Scholar 

  62. M. Krüger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jéhanno, M. Böning, and H. Kestler: Intermetallics, 2008, vol. 16, pp. 933–941.

    Article  Google Scholar 

  63. S. Aryal, M. Gao, L. Ouyang, P. Rulis, and W. Ching: Intermetallics, 2013, vol. 38, pp. 116–125.

    Article  CAS  Google Scholar 

  64. G. Simmons, and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, The M.I.T. Press, Cambridge, MA, 1971.

    Google Scholar 

  65. E.H. Moore: Bulletin of the American Mathematical Society, 1920, vol. 26, pp. 394–395.

    Google Scholar 

  66. R. Penrose and J.A. Todd: Mathematical Proceedings of the Cambridge Philosophical Society, 1955, vol. 51, p. 406–13.

    Article  Google Scholar 

  67. T. Matsumoto and A. Ono: Measurement Science and Technology, 2001, vol. 12, pp. 2095–2102.

    Article  CAS  Google Scholar 

  68. K. Shinzato and T. Baba: Journal of Thermal Analysis and Calorimetry, 2001, vol. 64, pp. 413–422.

    Article  CAS  Google Scholar 

  69. S.-H. Ha, K. Yoshimi, J. Nakamura, T. Kaneko, K. Maruyama, R. Tu, and T. Goto: Journal of Alloys and Compounds, 2014, vol. 594, pp. 52–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the German National Science Foundation (DFG) in the framework of the Graduate School (No. 1554) ‘Micro-Macro-Interactions in Structured Media and Particle Systems.’ Partial funding by the Methodisch-Diagnostisches Zentrum Werkstoffprüfung (MDZWP) e.V., Magdeburg, Germany is gratefully acknowledged. We would like to thank Marcus Aßmus for valuable discussions regarding consistent description of the transition from first-principles quantities to continuum mechanical material constants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hütter.

Additional information

Manuscript submitted May 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hütter, S., Hasemann, G., Al-Karawi, J. et al. Prediction of Thermodynamic Properties of Mo-Si-B Alloys from First-Principles Calculations. Metall Mater Trans A 49, 6075–6083 (2018). https://doi.org/10.1007/s11661-018-4928-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4928-1

Navigation