Skip to main content
Log in

EBSD Characterization of Cryogenically Rolled Type 321 Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electron backscatter diffraction was applied to investigate microstructure evolution during cryogenic rolling of type 321 metastable austenitic stainless steel. As expected, rolling promoted deformation-induced martensitic transformation which developed preferentially in deformation bands. Because a large fraction of the imposed strain was accommodated by deformation banding, grain refinement in the parent austenite phase was minimal. The martensitic transformation was found to follow a general orientation relationship, {111}γ||{0001}ε||{110}α and 〈110〉γ||〈11-20〉ε||〈111〉α, and was characterized by noticeable variant selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. According to Russian industrial standard.

  2. Refer to electronic supplementary material.

  3. The thickness of initial sheet was 2.3 mm.

  4. Here and hereafter, the reader is referred to the online version of the paper to see the figures in color.

  5. The measured orientation of the specific Brass grain is given in Supplementary Figure S-2.

  6. In the examined Goss and S grains, the detected fraction of the ε-martensite was low, and thus reliable measurements were difficult.

References

  1. [1] R. Valiev: Nature Mater., 2004, vol. 8, pp. 511-516, https://doi.org/10.1038/nmat1180

    Article  CAS  Google Scholar 

  2. [2] K. Tomimura, S. Takaki, S. Tanimoto and Y. Tokunaga: ISIJ International, 1991, vol. 31, pp. 721-727

    Article  CAS  Google Scholar 

  3. [3] K. Tomimura, S. Takaki and Y. Tokunaga: ISIJ International, 1991, vol. 31, pp. 1431-1437

    Article  CAS  Google Scholar 

  4. [4] Y. Lu, B. Hutchinson, D.A. Molodov, G. Gottstein: Acta Mater., 2010, vol. 58, pp. 3079–3090, https://doi.org/10.1016/j.actamat.2010.01.045

    Article  CAS  Google Scholar 

  5. [5] G.S. Sun, L.X. Du, J. Hu, R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 709, pp. 254-264, https://doi.org/10.1016/j.msea.2017.10.054

    Article  CAS  Google Scholar 

  6. [6] M. Odnobokova, A. Belyakov, N. Enikeev, D.A. Molodov, R. Kaibyshev: Mater. Sci. Eng. A, 2017, vol. 689, pp. 370-383, https://doi.org/10.1016/j.msea.2017.02.073

    Article  CAS  Google Scholar 

  7. [7] A. Kisko, A.S. Hamada, J. Talonen, D. Porter, L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359-370, https://doi.org/10.1016/j.msea.2016.01.093

    Article  CAS  Google Scholar 

  8. R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani, L.P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7779-7792, https://doi.org/10.1016/j.msea.2010.08.051

    Article  CAS  Google Scholar 

  9. S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1986–1996, https://doi.org/10.1016/j.msea.2009.11.037

    Article  CAS  Google Scholar 

  10. M. Eskandari, A. Najafizadeh, A. Kermanpur: Mater. Sci. Eng. A, 2009, vol. 519, pp. 46–50, https://doi.org/10.1016/j.msea.2009.04.038

    Article  CAS  Google Scholar 

  11. B. Ravi Kumar, A.K. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, D.K. Bhattacharya: Mater. Sci. Eng. A, 2006, vol. 429, pp. 205–211, https://doi.org/10.1016/j.msea.2006.05.107

    Article  CAS  Google Scholar 

  12. [12] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, and A. Kyrolainen: Metall. Mater. Trans. A, 2009, vol. 40, pp. 729-744

    Article  CAS  Google Scholar 

  13. [13] S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyrolainen: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1202-1210

    Article  CAS  Google Scholar 

  14. [14] D.L. Johannsen, A. Kyrolainen, and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325-2338

    Article  CAS  Google Scholar 

  15. [15] M. Nezakat, H. Akhiani, S.M. Sabet, J. Szpunar: Mater. Charact., 2017, vol. 123, pp. 115–127, https://doi.org/10.1016/j.matchar.2016.11.019

    Article  CAS  Google Scholar 

  16. [16] M. Nezakat, H. Akhiani, M. Hoseini, J. Szpunar: Mater. Character., 2014, vol. 98, pp. 10–17, https://doi.org/10.1016/j.matchar.2014.10.006

    Article  CAS  Google Scholar 

  17. [17] A.A. Tiamiyu, A.G. Odeshi, and J.A. Szpunar: JMEPEG, 2018, vol. 27, pp. 889-904, https://doi.org/10.1007/s11665-018-3180-6

    Article  CAS  Google Scholar 

  18. [18] K.H. Lo, C.H. Shek, J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39–104, https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  19. [19] J. Hirsch, K. Lucke, and M. Hatherly: Acta Metall., 1988, vol. 36, pp. 2905-2927, https://doi.org/10.1016/0001-6160(88)90174-5

    Article  CAS  Google Scholar 

  20. [20] L.J. Teutonico: Acta Metall., 1963, vol. 11, pp. 1283-1289, https://doi.org/10.1016/0001-6160(63)90023-3

    Article  CAS  Google Scholar 

  21. [21] J.W. Christian, S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1-157, https://doi.org/10.1016/0079-6425(94)00007-7

    Article  Google Scholar 

  22. [22] J.W. Brooks, M.H. Loretto, R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1839-1847, https://doi.org/10.1016/0001-6160(79)90074-9

    Article  CAS  Google Scholar 

  23. [23] A. Kermanpur, P. Behjati, J. Han, A. Najafizadeh, Y.-K. Lee: Mater. Design, 2015, vol. 82, pp. 273–280, https://doi.org/10.1016/j.matdes.2015.05.075

    Article  CAS  Google Scholar 

  24. [24] C. Ullrich, R. Eckner, L. Krüger, S. Martin, V. Klemm, D. Rafaja: Mater. Sci. Eng. A, 2016, vol. 649, pp. 390–399, https://doi.org/10.1016/j.msea.2015.10.021

    Article  CAS  Google Scholar 

  25. [25] I.R. Souza Filho, K.D. Zilnyk, M.J.R. Sandim, R.E. Bolmaro, H.R.Z. Sandim: Mater. Sci. Eng. A 2017, vol. 702, pp. 161–172, https://doi.org/10.1016/j.msea.2017.07.010

    Article  CAS  Google Scholar 

  26. [26] J. Chen, W. Zhang, Z. Liu, G. Wang: Mater. Sci. Eng. A, 2017, vol. 698, pp. 198–205, https://doi.org/10.1016/j.msea.2017.05.059

    Article  CAS  Google Scholar 

  27. [27] X. Zhang, T. Sawaguchi: Acta Mater., 2018, vol. 143, pp. 237-247, https://doi.org/10.1016/j.actamat.2017.10.009

    Article  CAS  Google Scholar 

  28. [28] G.B. Olson, M. Cohen: Metall. Trans. A, 1975, vol. 6, pp. 791-795, https://doi.org/10.1007/BF02672301

    Article  CAS  Google Scholar 

  29. [29] A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock: Scripta Mater., 2004, vol. 50, pp. 1445-1449, https://doi.org/10.1016/j.scriptamat.2004.03.011

    Article  CAS  Google Scholar 

  30. [30] T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–3186, https://doi.org/10.1016/j.actamat.2010.01.056

    Article  CAS  Google Scholar 

  31. [31] A. Das, S. Sivaprasad, P.C. Chakraborti, S. Tarafder: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7909-7914, https://doi.org/10.1016/j.msea.2011.07.011

    Article  CAS  Google Scholar 

  32. [32] Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514-522, https://doi.org/10.1016/j.msea.2012.05.080

    Article  CAS  Google Scholar 

  33. P. Mallick, N.K. Tewary, S.K. Ghosh, P.P. Chattopadhyay (2018) Mater. Charact. https://doi.org/10.1016/j.matchar.2017.09.027

    Article  Google Scholar 

  34. [34] T. Suzuki, J. Kojima, K. Suzuki, T. Hashimito, M. Ichihara: Acta Metall., 1977, vol. 25, pp. 1151-1162, https://doi.org/10.1016/0001-6160(77)90202-4

    Article  Google Scholar 

  35. [35] N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki: Acta Mater., 2010, vol. 58, pp. 895–903, https://doi.org/10.1016/j.actamat.2009.10.004

    Article  CAS  Google Scholar 

  36. [36] I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, R. Kaibyshev: Mater. Sci. Eng. A, 2012, vol. 545, pp. 176-186, https://doi.org/10.1016/j.msea.2012.02.101

    Article  CAS  Google Scholar 

  37. [37] S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan: Mater. Sci. Eng. A, 2015, vol. 636, pp. 221-230, https://doi.org/10.1016/j.msea.2015.03.101

    Article  CAS  Google Scholar 

  38. [38] L. Bracke, K. Verbeken, L. Kestens, J. Penning: Acta Mater., 2009, vol. 57, pp. 1512–1524, https://doi.org/10.1016/j.actamat.2008.11.036

    Article  CAS  Google Scholar 

  39. [39] B. Roy, R. Kumar, J. Das: Mater. Sci. Eng. A, 2015, vol. 631, pp. 241-247, https://doi.org/10.1016/j.msea.2015.02.050

    Article  CAS  Google Scholar 

  40. [40] T.S. Wang, J.P. Peng, Y.W. Gao, F.C. Zhang, T.F. Jing: Mater. Sci. Eng. A, 2005, vol. 407, pp. 84-88, https://doi.org/10.1016/j.msea.2005.06.022

    Article  CAS  Google Scholar 

  41. [41] M. Eskandari, A. Kermanpur, and A. Najafizadeh: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2241-2249, https://doi.org/10.1007/s11661-009-9916-z

    Article  CAS  Google Scholar 

  42. [42] T.-H. Lee, C.-S. Oh, S.J. Kim, S. Takaki: Acta Mater., 2007, vol. 55, pp. 3649-3662, https://doi.org/10.1016/j.actamat.2007.02.023

    Article  CAS  Google Scholar 

  43. [43] M. Klimova, S. Zherebtsov, N. Stepanov, G. Salishchev, D.A. Molodov: Mater. Character., 2017, vol. 132, pp. 20-30, https://doi.org/10.1016/j.matchar.2017.07.043

    Article  CAS  Google Scholar 

  44. [44] K.G. Farkhutdinov, R.G. Zaripova, E.E. Sinitsyna, Kh. Y. Mulyukov, B.F. Abdullin: Met. Phys., 1991, vol. 13, pp. 51-57 (in Russian).

    Google Scholar 

  45. [45] A.A. Tiamiyu, J.A. Szpunar, A.G. Odeshi, I. Oguocha, and M. Eskandari: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5990-6012, https://doi.org/10.1007/s11661-017-4361-x

    Article  CAS  Google Scholar 

  46. [46] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedstrom, A. Borgenstam: Acta Mater., 2012, vol. 60, pp. 7265-7274, https://doi.org/10.1016/j.actamat.2012.09.046

    Article  CAS  Google Scholar 

  47. [47] J. Hirsch, K. Lucke: Acta Metall., 1988, vol. 36, pp. 2863-2882, https://doi.org/10.1016/0001-6160(88)90172-1

    Article  CAS  Google Scholar 

  48. N. Hansen, D.J. Jensen (1999) Phil. Trans. R. Soc. Lond. A, 357:1447-1469. https://doi.org/10.1098/rsta.1999.0384

    Article  CAS  Google Scholar 

  49. [49] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–1288, https://doi.org/10.1016/j.actamat.2005.11.001

    Article  CAS  Google Scholar 

  50. [50] H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minamino: Mater. Character., 2005, vol. 54, pp. 378–386, https://doi.org/10.1016/j.matchar.2004.12.015.

    Article  CAS  Google Scholar 

  51. [51] B. Sonderegger, S. Mitsche, H. Cerjak: Mater. Character., 2007, vol. 58, pp. 874-882, https://doi.org/10.1016/j.matchar.2006.08.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Russian Fund for Fundamental Research (Project No. 17-42-020426) is gratefully acknowledged. The authors would also like to thank P. Klassman for technical assistance during cryogenic rolling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Mironov.

Additional information

Manuscript submitted April 13, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korznikova, G., Mironov, S., Konkova, T. et al. EBSD Characterization of Cryogenically Rolled Type 321 Austenitic Stainless Steel. Metall Mater Trans A 49, 6325–6336 (2018). https://doi.org/10.1007/s11661-018-4919-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4919-2

Navigation