Skip to main content
Log in

Microstructural Evolution and Mechanical Properties Evaluation of IN-939 Bonds Made by Isothermal Solidification of a Liquated Ni-Cr-B Interlayer

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The IN-939 superalloy was bonded under a high vacuum condition by isothermal solidification of a liquated Ni-Cr-B amorphous foil with a 38 μm thickness as the interlayer. The progression of isothermal solidification was completed at 1120 °C in the bonding time of 45 minutes and a single-phase gamma solid solution was formed at the centerline. Insufficient bonding times led to a formation of centerline eutectic products composed of gamma solid solution, Ni-rich boride, and Cr-rich boride phases. A reverse relationship between the bonding time and the width of eutectic micro-constituents was perceived. Some precipitates with blocky and widmanstatten morphologies were observed in the diffusion-affected zone (DAZ) which seemed to be Cr-rich borides. The maximum precipitation depth, the number, and the area fraction of DAZ precipitates were investigated. It was revealed that the microhardness distribution across the joints was governed by changes in the area fraction of DAZ precipitates. The applied shear tests demonstrated an increment in shear properties of the bonds by increasing the bonding time. A remarkable joint efficiency of ~ 83 pct accompanied by a high failure energy (~ 35 J) and displacement (~ 1.8 mm) was achieved in the bond made at 1120 °C for 60 minutes. The fractographic examination of the fracture surfaces illustrated two different dimple-like and semi-cleavage morphologies for the bonds with complete isothermal solidification and partial isothermal solidification, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K. Tokoro, N. Wikstrom, O. Ojo and M. Chaturvedi, Materials Science and Engineering: A, 2008, 477, 311-318.

    Article  Google Scholar 

  2. A. Ekrami, S. Moeinifar and A. Kokabi, Materials Science and Engineering: A, 2007, 456, 93-98.

    Article  Google Scholar 

  3. T.-s. LIN, H.-x. LI, H. Peng, Y. Xue, Y.-d. HUANG, L. Liang and H. Leng, Transactions of Nonferrous Metals Society of China, 2012, 22, 2112-2117.

    Article  CAS  Google Scholar 

  4. M. González, D. Martínez, A. Pérez, H. Guajardo and A. Garza, Materials Characterization, 2011, 62, 1116-1123.

    Article  Google Scholar 

  5. Z. Mišković, M. Jovanović, M. Gligić and B. Lukić, Vacuum, 1992, 43, 709-711.

    Article  Google Scholar 

  6. M. Jahangiri, S. Boutorabi and H. Arabi, Materials Science and Technology, 2012, 28, 1402-1413.

    Article  CAS  Google Scholar 

  7. M. Pouranvari, A. Ekrami and A. Kokabi, Journal of alloys and compounds, 2008, 461, 641-647.

    Article  CAS  Google Scholar 

  8. Y. H. Yang, Y. J. Xie, M. S. Wang and W. Ye, Materials & Design, 2013, 51, 141-147.

    Article  CAS  Google Scholar 

  9. H. Esmaeili, S. E. Mirsalehi and A. Farzadi, Metallurgical and Materials Transactions B, 2017, 48, 3259-3269.

    Article  CAS  Google Scholar 

  10. A. Y. Shamsabadi and R. Bakhtiari, Journal of Alloys and Compounds, 2016, 685, 896-904.

    Article  CAS  Google Scholar 

  11. M. Jahangiri, H. Arabi and S. Boutorabi, Materials Science and Technology, 2012, 28, 1470-1478.

    Article  CAS  Google Scholar 

  12. N. Wikstrom, A. Egbewande and O. Ojo, Journal of Alloys and Compounds, 2008, 460, 379-385.

    Article  CAS  Google Scholar 

  13. O. Ojo and M. Chaturvedi, Metallurgical and Materials Transactions A, 2007, 38, 356-369.

    Article  Google Scholar 

  14. M. G. Albarrán, D. Martínez, E. Díaz, J. Díaz, I. Guzman, E. Saucedo and A. M. Guzman, Journal of materials engineering and performance, 2014, 23, 1125-1130.

    Article  Google Scholar 

  15. M. Pouranvari, A. Ekrami and A. Kokabi, Materials & Design, 2013, 50, 694-701.

    Article  CAS  Google Scholar 

  16. W. F. Gale and D. A. Butts, Science and Technology of Welding and Joining, 2004, 9, 283-300.

    Article  CAS  Google Scholar 

  17. M. Pouranvari, A. Ekrami and A. Kokabi, Journal of Alloys and Compounds, 2013, 563, 143-149.

    Article  CAS  Google Scholar 

  18. R. Aluru, W. Gale, S. Chitti, N. Sofyan, R. Love and J. Fergus, Materials Science and Technology, 2008, 24, 517-528.

    Article  CAS  Google Scholar 

  19. D.F. Paulonis, D.S. Duvall, and W.A. Owczarski, Washington, U.S. Patent 3.678.570, 1972.

  20. G. O. Cook III and C. D. Sorensen, Journal of materials science, 2011, 46, 5305-5323.

    Article  CAS  Google Scholar 

  21. M. Pouranvari, A. Ekrami and A. Kokabi, Materials Science and Engineering: A, 2013, 568, 76-82.

    Article  CAS  Google Scholar 

  22. J.-D. Liu, B. Li, Y. Sun, T. Jin, X.-F. Sun, and Z.-Q. Hu, Rare Met., 2015, pp. 1–5.

  23. L. X. Zhang, Z. Sun, Q. Xue, M. Lei and X. Y. Tian, Materials & Design, 2016, 90, 949-957.

    Article  CAS  Google Scholar 

  24. S. Shakerin, V. Maleki, S. Alireza Ziaei, H. Omidvar, M. R. Rahimipour and S. E. Mirsalehi, Canadian Metallurgical Quarterly, 2017, 56, 360-367.

    Article  CAS  Google Scholar 

  25. M. Pouranvari, A. Ekrami, A. H. Kokabi and H. N. Han, Metals and Materials International, 2013, 19, 1091-1099.

    Article  CAS  Google Scholar 

  26. F. Jalilian, M. Jahazi and R. Drew, Materials Science and Engineering: A, 2006, 423, 269-281.

    Article  Google Scholar 

  27. D. Butts, Auburn university, Ph.D. Thesis, 2005, p. 108.

  28. M. Pouranvari, A. Ekrami and A. H. Kokabi, Science and Technology of Welding and Joining, 2018, 23, 13-18.

    Article  CAS  Google Scholar 

  29. M. Jahangiri, H. Arabi and S. Boutorabi, Transactions of Nonferrous Metals Society of China, 2014, 24, 1717-1729.

    Article  CAS  Google Scholar 

  30. O. Teppa and P. Taskinen, Materials science and technology, 1993, 9, 205-212.

    Article  Google Scholar 

  31. S. Shakerin, H. Omidvar and S. E. Mirsalehi, Materials & Design, 2016, 89, 611-619.

    Article  CAS  Google Scholar 

  32. A. Bondar, Non-Ferrous Metal Systems. Part 3., Springer, Berlin, 2007, pp. 153–167.

  33. M. Pouranvari, A. Ekrami and A. Kokabi, Journal of Alloys and Compounds, 2009, 469, 270-275.

    Article  CAS  Google Scholar 

  34. M. Khakian, S. Nategh and S. Mirdamadi, Journal of Alloys and Compounds, 2015, 653, 386-394.

    Article  CAS  Google Scholar 

  35. V. Maleki, H. Omidvar and M.-r. Rahimipour, Transactions of Nonferrous Metals Society of China, 2016, 26, 437-447.

    Article  CAS  Google Scholar 

  36. M. C. Flemings, Solidification Processing, McGraw-Hill Book Co., New York, NY, 1974, P. 32.

    Google Scholar 

  37. M. Pouranvari, A. Ekrami and A. H. Kokabi, Materials Science and Technology, 2013, 29, 980-984.

    Article  CAS  Google Scholar 

  38. O. A. Idowu, O. A. Ojo and M. C. Chaturvedi, Metallurgical and Materials Transactions A, 2006, 37, 2787-2796.

    Article  Google Scholar 

  39. K. Ohsasa, T. Narita and T. Shinmura, Journal of Phase Equilibria, 1999, 20, 199.

    Article  CAS  Google Scholar 

  40. W. F. Gale and E. R. Wallach, Metallurgical Transactions A, 1991, 22, 2451-2457.

    Article  Google Scholar 

  41. M. Pouranvari, A. Ekrami and A. H. Kokabi, Journal of Alloys and Compounds, 2017, 723, 84-91.

    Article  CAS  Google Scholar 

  42. M. Mosallaee, A. Ekrami, K. Ohsasa and K. Matsuura, Metallurgical and Materials Transactions A, 2008, 39, 2389-2402.

    Article  Google Scholar 

  43. R. Abbaschian and R.E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning, 2008, pp. 348–380.

  44. O. A. Ojo, N. L. Richards and M. C. Chaturvedi, Science and Technology of Welding and Joining, 2004, 9, 532-540.

    Article  CAS  Google Scholar 

  45. A. Ghoneim and O. Ojo, Materials Characterization, 2011, 62, 1-7.

    Article  CAS  Google Scholar 

  46. O. A. Ojo, N. L. Richards and M. C. Charturvedi, Science and Technology of Welding and Joining, 2004, 9, 209-220.

    Article  CAS  Google Scholar 

  47. M. Pouranvari, A. Ekrami and A. H. Kokabi, Science and Technology of Welding and Joining, 2014, 19, 105-110.

    Article  CAS  Google Scholar 

  48. M. Pouranvari, A. Ekrami and A. Kokabi, Materials Science and Engineering: A, 2008, 490, 229-234.

    Article  Google Scholar 

  49. R. Evans III, J. DeVan, and G. Watson, Oak Ridge National Lab., Tenn., United States, 1961.

  50. M. Pouranvari, Materials Science and Technology, 2015, 31, 1773-1780.

    Article  CAS  Google Scholar 

  51. X. Yuan, M. B. Kim, Y. H. Cho and C. Y. Kang, Metallurgical and Materials Transactions A, 2012, 43, 1989-2001.

    Article  CAS  Google Scholar 

  52. R. W. Hertzberg, R. P. Vinci and J. L. Hertzberg, Deformation and fracture mechanics of engineering materials, Wiley New York, 2013, p. 326.

    Google Scholar 

Download references

Acknowledgments

The support of Iran National Science Foundation (INSF) (Grant No. 96013708) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Ehsan Mirsalehi.

Additional information

Manuscript submitted March 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arhami, F., Mirsalehi, S.E. Microstructural Evolution and Mechanical Properties Evaluation of IN-939 Bonds Made by Isothermal Solidification of a Liquated Ni-Cr-B Interlayer. Metall Mater Trans A 49, 6197–6214 (2018). https://doi.org/10.1007/s11661-018-4918-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4918-3

Navigation