Skip to main content
Log in

Nanopowder Effect on Fe Nano/Micro-Bimodal Powder Injection Molding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nano/micro-bimodal powder injection molding (PIM) process takes advantage of nano-PIM. Most studies of the process were performed with bimodal powder feedstocks containing only small amounts of nanoparticles because they focused on properties of the samples with the optimal contents of nanoparticles. This study presents how nanoparticles in bimodal powder affect the PIM process. Five different feedstocks were prepared with the powders containing nanoparticles from 0 to 100 pct. The result demonstrated that a decrease in solids loading was offset by nanoparticle addition due to the bimodal packing effect. The nanoparticles also increased the difficulty of the debinding process. Sintering was conducted at 1173 K (900 °C), at which the highest sintered density could be obtained, with various isothermal holding times. Unlike the density, the hardness did not reveal any dependence on the holding time due to grain growth. From this study, 25 pct was regarded as the optimal content of the nanoparticles in the bimodal powder for the maximum density and hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R.M. German and A. Bose: Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Princeton, NJ, 1997, pp. 11–33.

    Google Scholar 

  2. L.H. Cheng and K.S. Hwang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 827–34.

    Article  Google Scholar 

  3. J. Do, H.J. Lee, C. Jeon, D.J. Ha, C.P. Kim, B.J. Lee, S. Lee, and Y.S. Shin: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2237–50.

    Article  Google Scholar 

  4. I.D. Jung, S. Ha, S.J. Park, D.C. Blaine, R. Bollina, and R.M. German: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5548–56.

    Article  Google Scholar 

  5. H. Yin, X. Qu, and C. Jia: J. Univ. Sci. Technol. Beijing, 2008, vol. 15, pp. 480–83.

    Article  Google Scholar 

  6. J.S. Han, C.W. Gal, J.H. Kim, and S.J. Park: Ceram. Int., 2016, vol. 42, pp. 9475–81.

    Article  CAS  Google Scholar 

  7. G. Wen, P. Cao, B. Gabbitas, D. Zhang, and N. Edmonds: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1530–47.

    Article  Google Scholar 

  8. S. Supriadi, E.R. Baek, C.J. Choi, and B.T. Lee: J. Mater. Process. Technol., 2007, vols. 187–188, pp. 270–73.

    Article  Google Scholar 

  9. K.H. Kim, B.T. Lee, and C.J. Choi: J. Alloys Compd., 2010, vol. 491, pp. 391–94.

    Article  CAS  Google Scholar 

  10. S.J. Son, Y.S. Cho, and C.J. Choi: Rev. Adv. Mater. Sci., 2011, vol. 28, pp. 190–95.

    CAS  Google Scholar 

  11. J. Rajabi, N. Muhamad, and A.B. Sulong: Microsyst. Technol., 2012, vol. 18, pp. 1941–61.

    Article  Google Scholar 

  12. J.W. Lee, S. Timilsina, G.W. Kim, and J.S. Kim: Powder Technol., 2016, vol. 302, pp. 187–95.

    Article  CAS  Google Scholar 

  13. U.M. Attia and J.R. Alcock: J. Micromech. Microeng., 2011, vol. 21, p. 043001.

    Article  Google Scholar 

  14. J.L. Johnson: Met. Powder Rep., 2009, vol. 64, pp. 22–27.

    Article  Google Scholar 

  15. P.C. Yu, Q.F. Li, J.Y.H. Fuh, T. Li, and P.W. Ho: Microsyst. Technol., 2009, vol. 15, pp. 401–06.

    Article  CAS  Google Scholar 

  16. J.W. Oh, W.S. Lee, and S.J. Park: Powder Technol., 2017, vol. 311, pp. 18–24.

    Article  CAS  Google Scholar 

  17. R. Li, M. Qin, C. Liu, H. Huang, H. Lu, P. Chen, and X. Qu: Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 42–46.

    Article  CAS  Google Scholar 

  18. K.H. Kate, R.K. Enneti, V.P. Onbattuvelli, and S.V. Atre: Ceram. Int., 2013, vol. 39, pp. 6887–97.

    Article  CAS  Google Scholar 

  19. M. Müller, W. Bauer, and H.J.R. Kleissl: Multi-Material Micro Manufacture, 2005, pp. 1–4.

  20. K. Nishiyabu, K. Kakishita, and S. Tanaka: Mater. Sci. Forum, 2007, vols. 534–536, pp. 381–84.

    Article  Google Scholar 

  21. J.P. Choi, G.Y. Lee, J.I. Song, W.S. Lee, and J.S. Lee: Powder Technol., 2015, vol. 279, pp. 196–202.

    Article  CAS  Google Scholar 

  22. J.W. Oh, R. Bollina, W.S. Lee, and S.J. Park: Powder Technol., 2016, vol. 302, pp. 168–76.

    Article  CAS  Google Scholar 

  23. J. Rajabi, N. Muhamad, A.B. Sulong, A. Fayyaz, and M.R. Raza: Mater. Des., 2014, vol. 63, pp. 223–32.

    Article  CAS  Google Scholar 

  24. H. Ferkel and R.J. Hellmig: Nanostruct. Mater., 1999, vol. 11, pp. 617–22.

    Article  CAS  Google Scholar 

  25. H.C. Hamaker: Physica, 1937, vol. 4, pp. 1058–72.

    Article  CAS  Google Scholar 

  26. R.M. German: Metall. Trans. A, 1992, vol. 23A, pp. 1455–65.

    Article  CAS  Google Scholar 

  27. J. Li, Y. Pan, F. Qiu, L. Huang, and J. Guo: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 611–19.

    Article  Google Scholar 

  28. B.N. Mukund, B. Hausnerova, and T.S. Shivashankar: Powder Technol., 2015, vol. 283, pp. 24–31.

    Article  CAS  Google Scholar 

  29. X. Colin and J. Verdu: C. R. Chim., 2006, vol. 9, pp. 1380–95.

    Article  CAS  Google Scholar 

  30. S.W. Kim: J. Supercrit. Fluids, 2010, vol. 51, pp. 339–44.

    Article  Google Scholar 

  31. A. Páez-Pavón, A. Jiménez-Morales, T.G. Santos, L. Quintino, and J. M. Torralba: J. Magn. Magn. Mater., 2016, vol. 416, pp. 342–47.

    Article  Google Scholar 

  32. M.H.I. Ibrahim, N. Muhamad, and A.B. Sulong: IJMME, 2009, vol. 4, pp. 1–8.

    Google Scholar 

  33. G. Aggarwal, I. Smid, S.J. Park, and R.M. German: Int. J. Refract. Met. H., 2007, vol. 25, pp. 226–36.

    Article  CAS  Google Scholar 

  34. S.J. Park, Y. Wu, D.F. Heaney, X. Zou G. Gai, and R.M. German: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 215–22.

    Article  CAS  Google Scholar 

  35. M.K. Mani, G. Viola, J.P. Hall, S. Grasso, and M.J. Reece: J. Magn. Magn. Mater., 2015, vol. 382, pp. 202–05.

    Article  Google Scholar 

  36. M.J. O’Hara and I.B. Cutler: Proc. Br. Ceram. Soc., 1969, vol. 12, pp. 145–54.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the R&D Convergence Program of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Council of Science and Technology (NST), Republic of Korea (Grant No. B551179-12-02-00). This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Grant No. 2011-0030075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jin Park.

Additional information

Manuscript submitted December 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.W., Lee, W.S. & Park, S.J. Nanopowder Effect on Fe Nano/Micro-Bimodal Powder Injection Molding. Metall Mater Trans A 49, 5535–5545 (2018). https://doi.org/10.1007/s11661-018-4851-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4851-5

Navigation