Creep Behavior of Quinary γ′-Strengthened Co-Based Superalloys


First-principles DFT methods are combined with an experimental approach to characterize the creep behavior of quinary Co-based L1\(_2\)-containing superalloys at elevated temperature conditions. Temperature-dependent SISF energies have been modeled, combining 0 K formation energies with vibrational free energy calculations to assess deformation mechanisms at finite temperature. Two different Co-Al-W alloys, containing the maximum possible amount of DFT-identified d-block alloying additions, were identified and cast as single crystals via the Bridgman process. Creep tests have been performed at two primary testing conditions, one at 900 \(^\circ \)C and the other at 982 \(^\circ \)C. Transmission scanning electron microscopy (TSEM) was performed at 30 kV in a scanning electron microscope to rapidly characterize the defect substructures. We observe a coupled APB/SISF/APB defect structure in Co-based superalloys at the low-temperature condition, similar to the defect structure observed in CoNi, in spite of containing no Ni. At 982 \(^\circ \)C, there is no evidence of faults and precipitates instead contain antiphase boundaries. The role of composition and temperature-dependent fault energies in the deformation process is addressed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Reproduced with permission from Ref. [34]


  1. 1.

    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90-91.

    Article  Google Scholar 

  2. 2.

    M.S. Titus, A. Suzuki, and T.M. Pollock: Scr. Mater., 2012, vol. 66, pp. 574-577.

    Article  Google Scholar 

  3. 3.

    F. Xue, H.J. Zhou, X.H. Chen, H. Chang, M.L. Wang, and Q. Feng: Scr. Mater., 2015, vol. 97, pp. 37-40.

    Article  Google Scholar 

  4. 4.

    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1-30.

    Article  Google Scholar 

  5. 5.

    M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530-539.

    Article  Google Scholar 

  6. 6.

    Y.M Eggler, M.S. Titus, A. Suzuki, and T.M. Pollock: Acta Mater., 2014, vol. 77, pp. 352-359.

    Article  Google Scholar 

  7. 7.

    R.C. Reed: The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, U.K., 2006, pp. 16-30.

    Google Scholar 

  8. 8.

    R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367-3381.

    Article  Google Scholar 

  9. 9.

    M.S. Titus, A. Mottura, R.K. Rhein, M.H. Chen, A. Van der Ven, and T.M. Pollock: Beyond Nickel-Based Superalloys: Conference Proceedings, ECI Digital Archives, 2016.

  10. 10.

    G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558-561.

    Article  Google Scholar 

  11. 11.

    G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15-50.

    Article  Google Scholar 

  12. 12.

    G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758-1775.

    Article  Google Scholar 

  13. 13.

    J.P Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865-3868.

    Article  Google Scholar 

  14. 14.

    N. Ashcroft and N. Mermin: Solid State Physics, 1st ed., Brooks Cole, Pacific Grove, 1976.

    Google Scholar 

  15. 15.

    S. Wei and M.Y. Chen: Phys. Rev. Lett., 1992, vol. 69, pp. 2799-2802.

    Article  Google Scholar 

  16. 16.

    M. Born: Dynamical Theory of Crystal Lattices, 1st ed., Clarendon Press, Wotton-under-Edge, UK, 1954.

    Google Scholar 

  17. 17.

    E.A. Lass: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2443-2459.

    Article  Google Scholar 

  18. 18.

    M. Tsunekane, A. Suzuki, and T.M. Pollock: Intermetallics, 2011, vol. 19, pp. 636-643.

    Article  Google Scholar 

  19. 19.

    A.J. Elliot, T.M. Pollock, S. Tin, W.T. King, S.-C. Huang, and M.F.X. Gigliotti: Met. Trans. A, 2004, vol. 35, pp. 3221-3231.

    Article  Google Scholar 

  20. 20.

    C.J. Humphreys: Ultramicroscopy, 1981, vol. 7, pp. 7-12.

    Article  Google Scholar 

  21. 21.

    P.G. Callahan, J.C. Stinville, E.R. Yao, M.P. Echlin, M.S. Titus, D.S. Gianola, M. De Graef, and T.M. Pollock: Ultramicroscopy, 2018, vol. 186, pp. 49-61.

    Article  Google Scholar 

  22. 22.

    D.J.H. Cockayne: J. Phys., Colloq., 1974, vol. 35, pp. 141-148.

    Article  Google Scholar 

  23. 23.

    A. Mottura, A. Janotti, and T.M. Pollock: Intermetallics, 2012, vol. 28, pp. 138-143.

    Article  Google Scholar 

  24. 24.

    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671-675.

    Article  Google Scholar 

  25. 25.

    J.C. Yen, F.J. Chang, and S. Chang: IEEE Trans. on Image Process., 1995, vol. 4, pp. 370-378.

    Article  Google Scholar 

  26. 26.

    M. Sezgin and B. Sankur: J. of Elect. Imag., 2004, vol. 13, pp. 146-168.

    Article  Google Scholar 

  27. 27.

    K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui: Philos. Mag., 2012, vol. 92, pp. 4011-4027.

    Article  Google Scholar 

  28. 28.

    A. Suzuki, H. Inui, and T.M. Pollock: Ann. Rev. Mater. Res., 2015, vol. 45, pp. 345-368.

    Article  Google Scholar 

  29. 29.

    F. Xue, C.H. Zenk, L.P. Freund, M. Hoelzel, S. Neumeier, and M. Göken: Scr. Mater., 2018, vol. 142, pp. 129-132.

    Article  Google Scholar 

  30. 30.

    K. Harris, G.L. Erickson, and R.E. Schwer: ASME 1983 International Gas Turbine Conference and Exhibit, 1983, vol. 5, pp. 1–11.

  31. 31.

    D.J. Frasier, J.R. Whetstone, K. Harris, G.L. Erickson, and R.E. Schwer: Proceedings of the Part II of Cost Conference, 1990, vol. 5, pp. 1281–90.

  32. 32.

    G.E. Fuchs: J. Mater. Eng. Perform., 2002, vol. 11, pp. 19-25.

    Article  Google Scholar 

  33. 33.

    M.G. Hebsur and R.V. Miner: NASA Tech. Mem. 88950, 1987, pp. 1-11.

    Google Scholar 

  34. 34.

    Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spieker: Acta Mater., 2016, vol. 113, pp. 335-349.

    Article  Google Scholar 

  35. 35.

    K. Tanaka, T. Ohashi, K. Kishida, and H. Inui: Appl. Phys. Lett., 2007, vol. 91, p. 181907

    Article  Google Scholar 

  36. 36.

    B. Goodlet, L. Mills, B. Bales, M.A. Charpagne, S.P. Murray, W.C. Lenthe, L. Petzold, and T.M. Pollock: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2324–2339.

    Article  Google Scholar 

  37. 37.

    M.S. Titus, R.K. Rhein, P.B. Wells, P.C. Dodge, G.B. Viswanathan, M.J. Mills, A. Van der Ven, and T.M. Pollock: Sci. Adv., 2016, vol. 2, e1601796.

    Article  Google Scholar 

  38. 38.

    S.K. Makineni, M. Lenz, P. Kontis, A. Kumar, P.J. Felfer, S. Neumeier, M. Herbig, E. Speicker, D. Raabe, and B. Gault: JOM, 2018, vol. 27, pp. 1–8.

    Google Scholar 

  39. 39.

    S.M. Allen and J.W. Cahn: Acta Metall., 1979, vol. 27, pp. 1085-1095.

    Article  Google Scholar 

Download references


This research was supported by a Grant from the National Science Foundation (NSF-DMREF-1534264). Computational resource support was provided by the Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC (DMR-1121053) and NSF CNS-0960316. We would like to thank Chris Torbet for his assistance in casting and machining of the specimens.

Author information



Corresponding author

Correspondence to Robert K. Rhein.

Additional information

Manuscript submitted March 14, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rhein, R.K., Callahan, P.G., Murray, S.P. et al. Creep Behavior of Quinary γ′-Strengthened Co-Based Superalloys. Metall and Mat Trans A 49, 4090–4098 (2018).

Download citation