Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4090–4098 | Cite as

Creep Behavior of Quinary γ′-Strengthened Co-Based Superalloys

  • Robert K. RheinEmail author
  • Patrick G. Callahan
  • Sean P. Murray
  • Jean-Charles Stinville
  • Michael S. Titus
  • Anton Van der Ven
  • Tresa M. Pollock
Topical Collection: Superalloys and Their Applications
  • 568 Downloads
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications

Abstract

First-principles DFT methods are combined with an experimental approach to characterize the creep behavior of quinary Co-based L1\(_2\)-containing superalloys at elevated temperature conditions. Temperature-dependent SISF energies have been modeled, combining 0 K formation energies with vibrational free energy calculations to assess deformation mechanisms at finite temperature. Two different Co-Al-W alloys, containing the maximum possible amount of DFT-identified d-block alloying additions, were identified and cast as single crystals via the Bridgman process. Creep tests have been performed at two primary testing conditions, one at 900 \(^\circ \)C and the other at 982 \(^\circ \)C. Transmission scanning electron microscopy (TSEM) was performed at 30 kV in a scanning electron microscope to rapidly characterize the defect substructures. We observe a coupled APB/SISF/APB defect structure in Co-based superalloys at the low-temperature condition, similar to the defect structure observed in CoNi, in spite of containing no Ni. At 982 \(^\circ \)C, there is no evidence of faults and precipitates instead contain antiphase boundaries. The role of composition and temperature-dependent fault energies in the deformation process is addressed.

Notes

Acknowledgments

This research was supported by a Grant from the National Science Foundation (NSF-DMREF-1534264). Computational resource support was provided by the Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC (DMR-1121053) and NSF CNS-0960316. We would like to thank Chris Torbet for his assistance in casting and machining of the specimens.

References

  1. 1.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90-91.CrossRefGoogle Scholar
  2. 2.
    M.S. Titus, A. Suzuki, and T.M. Pollock: Scr. Mater., 2012, vol. 66, pp. 574-577.CrossRefGoogle Scholar
  3. 3.
    F. Xue, H.J. Zhou, X.H. Chen, H. Chang, M.L. Wang, and Q. Feng: Scr. Mater., 2015, vol. 97, pp. 37-40.CrossRefGoogle Scholar
  4. 4.
    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1-30.CrossRefGoogle Scholar
  5. 5.
    M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530-539.CrossRefGoogle Scholar
  6. 6.
    Y.M Eggler, M.S. Titus, A. Suzuki, and T.M. Pollock: Acta Mater., 2014, vol. 77, pp. 352-359.CrossRefGoogle Scholar
  7. 7.
    R.C. Reed: The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, U.K., 2006, pp. 16-30.CrossRefGoogle Scholar
  8. 8.
    R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367-3381.CrossRefGoogle Scholar
  9. 9.
    M.S. Titus, A. Mottura, R.K. Rhein, M.H. Chen, A. Van der Ven, and T.M. Pollock: Beyond Nickel-Based Superalloys: Conference Proceedings, ECI Digital Archives, 2016.Google Scholar
  10. 10.
    G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558-561.CrossRefGoogle Scholar
  11. 11.
    G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15-50.CrossRefGoogle Scholar
  12. 12.
    G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758-1775.CrossRefGoogle Scholar
  13. 13.
    J.P Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865-3868.CrossRefGoogle Scholar
  14. 14.
    N. Ashcroft and N. Mermin: Solid State Physics, 1st ed., Brooks Cole, Pacific Grove, 1976.Google Scholar
  15. 15.
    S. Wei and M.Y. Chen: Phys. Rev. Lett., 1992, vol. 69, pp. 2799-2802.CrossRefGoogle Scholar
  16. 16.
    M. Born: Dynamical Theory of Crystal Lattices, 1st ed., Clarendon Press, Wotton-under-Edge, UK, 1954.Google Scholar
  17. 17.
    E.A. Lass: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2443-2459.CrossRefGoogle Scholar
  18. 18.
    M. Tsunekane, A. Suzuki, and T.M. Pollock: Intermetallics, 2011, vol. 19, pp. 636-643.CrossRefGoogle Scholar
  19. 19.
    A.J. Elliot, T.M. Pollock, S. Tin, W.T. King, S.-C. Huang, and M.F.X. Gigliotti: Met. Trans. A, 2004, vol. 35, pp. 3221-3231.CrossRefGoogle Scholar
  20. 20.
    C.J. Humphreys: Ultramicroscopy, 1981, vol. 7, pp. 7-12.CrossRefGoogle Scholar
  21. 21.
    P.G. Callahan, J.C. Stinville, E.R. Yao, M.P. Echlin, M.S. Titus, D.S. Gianola, M. De Graef, and T.M. Pollock: Ultramicroscopy, 2018, vol. 186, pp. 49-61.CrossRefGoogle Scholar
  22. 22.
    D.J.H. Cockayne: J. Phys., Colloq., 1974, vol. 35, pp. 141-148.CrossRefGoogle Scholar
  23. 23.
    A. Mottura, A. Janotti, and T.M. Pollock: Intermetallics, 2012, vol. 28, pp. 138-143.CrossRefGoogle Scholar
  24. 24.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671-675.CrossRefGoogle Scholar
  25. 25.
    J.C. Yen, F.J. Chang, and S. Chang: IEEE Trans. on Image Process., 1995, vol. 4, pp. 370-378.CrossRefGoogle Scholar
  26. 26.
    M. Sezgin and B. Sankur: J. of Elect. Imag., 2004, vol. 13, pp. 146-168.CrossRefGoogle Scholar
  27. 27.
    K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui: Philos. Mag., 2012, vol. 92, pp. 4011-4027.CrossRefGoogle Scholar
  28. 28.
    A. Suzuki, H. Inui, and T.M. Pollock: Ann. Rev. Mater. Res., 2015, vol. 45, pp. 345-368.CrossRefGoogle Scholar
  29. 29.
    F. Xue, C.H. Zenk, L.P. Freund, M. Hoelzel, S. Neumeier, and M. Göken: Scr. Mater., 2018, vol. 142, pp. 129-132.CrossRefGoogle Scholar
  30. 30.
    K. Harris, G.L. Erickson, and R.E. Schwer: ASME 1983 International Gas Turbine Conference and Exhibit, 1983, vol. 5, pp. 1–11.Google Scholar
  31. 31.
    D.J. Frasier, J.R. Whetstone, K. Harris, G.L. Erickson, and R.E. Schwer: Proceedings of the Part II of Cost Conference, 1990, vol. 5, pp. 1281–90.Google Scholar
  32. 32.
    G.E. Fuchs: J. Mater. Eng. Perform., 2002, vol. 11, pp. 19-25.CrossRefGoogle Scholar
  33. 33.
    M.G. Hebsur and R.V. Miner: NASA Tech. Mem. 88950, 1987, pp. 1-11.Google Scholar
  34. 34.
    Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spieker: Acta Mater., 2016, vol. 113, pp. 335-349.CrossRefGoogle Scholar
  35. 35.
    K. Tanaka, T. Ohashi, K. Kishida, and H. Inui: Appl. Phys. Lett., 2007, vol. 91, p. 181907CrossRefGoogle Scholar
  36. 36.
    B. Goodlet, L. Mills, B. Bales, M.A. Charpagne, S.P. Murray, W.C. Lenthe, L. Petzold, and T.M. Pollock: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2324–2339.CrossRefGoogle Scholar
  37. 37.
    M.S. Titus, R.K. Rhein, P.B. Wells, P.C. Dodge, G.B. Viswanathan, M.J. Mills, A. Van der Ven, and T.M. Pollock: Sci. Adv., 2016, vol. 2, e1601796.CrossRefGoogle Scholar
  38. 38.
    S.K. Makineni, M. Lenz, P. Kontis, A. Kumar, P.J. Felfer, S. Neumeier, M. Herbig, E. Speicker, D. Raabe, and B. Gault: JOM, 2018, vol. 27, pp. 1–8.Google Scholar
  39. 39.
    S.M. Allen and J.W. Cahn: Acta Metall., 1979, vol. 27, pp. 1085-1095.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Robert K. Rhein
    • 1
    Email author
  • Patrick G. Callahan
    • 1
  • Sean P. Murray
    • 1
  • Jean-Charles Stinville
    • 1
  • Michael S. Titus
    • 1
  • Anton Van der Ven
    • 1
  • Tresa M. Pollock
    • 1
  1. 1.Materials DepartmentUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations