Skip to main content
Log in

Microstructural Development of an AlNiBi Alloy and Influence of the Transient Horizontal Solidification Parameters on Microhardness

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The combination of the structural and tribological properties presented by AlNiBi alloys has motivated us to establish, as the main objective of this study, the investigation of the microstructural evolution and its influence on the microhardness (HV) of Al-3wt pct Ni-1wt pct Bi alloy horizontally solidified via a water-cooled directional solidification device. Temperature mapping by thermocouples inserted in the metal has been performed for experimental determination of the solidification thermal parameters, such as the growth rate and cooling rate (VL and TR, respectively). The microstructure has been characterized by optical and scanning electron microscopy and by microanalysis of the composition via dispersive energy spectroscopy (EDS composition). The macrostructure of the as-solidified ingot is characterized by columnar grains, and the final microstructure consists of an Al-rich primary phase (α-Al) and a eutectic mixture composed of two phases: α-Al + Al3Ni intermetallic (β) with Bi particles anchored on the β phase. The Bi droplet scale is affected by the thermal parameters. The primary phase (α-Al) is characterized by a reverse cellular-to-dendritic microstructural transition. Cellular and dendritic microstructures have been quantified by the cell, primary dendrite arm, secondary dendrite arm, and tertiary dendrite arm spacings (λC, λ1, λ2, and λ3, respectively). The relationships of λC, λ1, λ2, and λ3 with VL and TR have been established via power-type mathematical expressions. The HV dependence on λC, λ1, λ2, and λ3 has been analyzed in both cellular and dendritic microstructural zones. It has been observed that the HV values do not vary in the dendritic zone; however, Hall–Petch’s mathematical equations characterize the HV variation with these thermal and microstructural parameters in the cellular zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. OL Rocha, CA Siqueira, and A Garcia: Metall. Mater. Trans. A, 2003, vol. 34, pp. 995–06.

    Article  Google Scholar 

  2. MD Peres, CA Siqueira, and A Garcia: J. Alloys Compd., 2004, vol. 381, pp. 168–81.

    Article  Google Scholar 

  3. TA Costa, M Dias, LG Gomes, OL Rocha, and A Garcia: J. Alloys Compd., 2016, vol. 683, pp. 485–94.

    Article  Google Scholar 

  4. LG Gomes, DJ Moutinho, IL Ferreira, OL Rocha, and A Garcia: Appl. Mech. Mater., 2015, vols. 719–20, pp. 102–05.

    Article  Google Scholar 

  5. E Acer, E Çadirli, H Erol, H Kaya, and M Gunduz: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5911–23.

    Article  Google Scholar 

  6. R Kakitani, RV Reyes, A Garcia, JE Spinelli, and N Cheung: J. Alloys Compd., 2018, vol. 733, pp. 59–68.

    Article  Google Scholar 

  7. EC Araújo, AS Barros, RH Kikuchi, AP Silva, FA Gonçalves, AL Moreira, and OL Rocha: Metall. Mater. Trans. A, 2017, vol. 48, pp. 1163–75.

    Article  Google Scholar 

  8. AS Barros, IA Magno, FA Souza, CA Mota, AL Moreira, MA Silva, and OL Rocha: Metall. Mater. Int., 2015, vol. 21, pp. 429–39.

    Article  Google Scholar 

  9. F Bertelli, C Brito, Il Ferreira, G Reinhart, H Nguyen-Thi, N Mangelinck-Noel, N Cheung, and A Garcia: Mater. Des., 2015, vol. 72, pp. 31–42.

  10. C Brito, T Vida, E Freitas, N Cheung, JE Spinelli, and A Garcia: J. Alloys Compd., 2016, vol. 673, pp. 220–30.

    Article  Google Scholar 

  11. C Brito, Ca Siqueira, JE Spinelli, and A Garcia: Mater. Let., 2012, vol. 80, pp. 106–09.

  12. MV Canté, C Brito, JE Spinelli, and A Garcia: Mater. Des., 2013, vol. 51, pp. 342–46.

    Article  Google Scholar 

  13. KS Cruz, ES Meza, FAP Fernandes, JMV Quaresma, LC Casteletti, and A Garcia: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 972–84.

    Article  Google Scholar 

  14. M Dias, T Costa, O Rocha, JE Spinelli, N Cheung, and A Garcia: Mater. Charact., 2015, vol. 106, pp. 52–61.

    Article  Google Scholar 

  15. ES Freitas, WR Osório, JE Spinelli, and A Garcia: Micr. Reliab., 2014, vol. 54, pp.1392–1400.

    Article  Google Scholar 

  16. ES Freitas, AP Silva, JE Spinelli, LC Casteletti, and A Garcia: Trib. Let., 2014, vol. 55, pp. 111–20.

    Article  Google Scholar 

  17. ES Freitas, JE Spinelli, LC Casteletti, and A Garcia: Trib. Inter., 2013, vol. 66, pp. 182–86.

    Article  Google Scholar 

  18. PR Goulart, JE Spinelli, N Cheung, and A Garcia: Mater. Chem. Phys., 2010, vol. 119, pp. 272–78.

    Article  Google Scholar 

  19. RN Grugel, and A Hellawell: Metall. Mater. Trans. A, 1981, vol. 12, pp. 669–81.

    Article  Google Scholar 

  20. RN Grugel, T Lograsso and A Hellawell: Metall. Mater. Trans. A, 1984, vol. 15, pp. 1003–12.

    Article  Google Scholar 

  21. M Gunduz and E Çadirli: Mater. Sci. Eng., A, 2002, vol. 327, pp. 167–85.

    Article  Google Scholar 

  22. IG Kaban, and W Hoyer: Phys. Rev. B, 2008, vol. 77, pp. 125426–32.

    Article  Google Scholar 

  23. R Dai, JF Zhang, SG Zhang, and JG Li: Mater. Charact., 2013, vol. 81, pp. 49–55.

    Article  Google Scholar 

  24. A Kamio, H Tezuka, S Kumai, and T Takahashi: Trans. Jap. Inst. Met., 1984, vol. 25, pp. 569–74.

    Article  Google Scholar 

  25. H Kaya, U Boyuk, E Çadirli, and N Marasli: Metall. Mat. Int., 2013, vol. 19, pp. 39–44.

    Article  Google Scholar 

  26. DJ Moutinho, LG Gomes, OL Rocha, IL Ferreira, and A Garcia: Mat. Sci. For., 2013, vol. 730, pp. 883–88.

    Google Scholar 

  27. T Okamoto and K Kishitake: J. Cryst. Growth, 1975, vol. 29, pp. 137–146.

    Article  Google Scholar 

  28. WR Osório, LC Peixoto, and A Garcia: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4255–67.

    Article  Google Scholar 

  29. AP Silva, JE Spinelli, N Mangelinck-Noël, and A Garcia: Mater. Des., 2010, vol. 31, pp. 4584–91.

    Article  Google Scholar 

  30. AP Silva, JE Spinelli, and A Garcia: J. Alloys Compd., 2009, vol. 480, pp. 485–93

  31. AP Silva, JE Spinelli, and A Garcia: J. Alloys Compd., 2009, vol. 475, pp. 347–51

  32. De Souza Silva, M. A. P. Transient Solidification of Monotectic Al-Bi, Al-Pb and Al-In Alloys Systems. 2011. Ph.D. Thesis. Faculty of Mechanical Engineering, State University of Campinas, Brazil, 2011.

  33. M Rappaz, and WJ Boettinger: Acta Mater., 1999, vol. 47, pp. 3205–19.

    Article  Google Scholar 

  34. H Kaya, U Boyuk, E Çadırlı, and N Maraslı: Kovove Mater., 2010, vol. 48, pp. 291–300.

    Google Scholar 

  35. H Kaya, U Boyuk, E Çadırlı, and N Maraslı: Mater. Des., 2012, vol. 34, pp. 707–12.

    Article  Google Scholar 

  36. BL Silva, IJC Araujo, WS Silva, PR Goulart, A Garcia, and JE Spinelli: Phil. Mag. Let., 2011, vol. 91, pp. 337–43.

    Article  Google Scholar 

  37. IF Araujo, BL Silva, JE Spinellim A Garcia: Mater. Res., 2011, vol. 14, pp. 268–73.

  38. Z Li, AM Samuel, FH Samuel, C Ravindran, and S Valtierra: J. Mater. Sci., 2003, vol. 38, pp. 1203–18.

    Article  Google Scholar 

  39. DG Eskin and LS Toropova: Mater. Sci. Eng. A, 1994, vol. 183, pp. L1-L4.

    Article  Google Scholar 

  40. D. W. Heard and M. Brochu: J. Mater. Proc. Tech., 2010, vol. 210(6), 892-898.

    Article  Google Scholar 

  41. N. A. Belov, A. N. Alabin, and D. G. Eskin: Scripta Materialia, 2004, vol. 50(1), 89-94.

    Article  Google Scholar 

  42. S. Farahany, A. Ourdjini, M. H. Idris, and L. T. Thai: Trans. Nonf. Met. Soc. of China, 2011, vol. 21(7), 1455-464.

    Article  Google Scholar 

  43. S. Farahany, H. Ghandvar, N. A. Nordin, A. Ourdjini, and M. H. Idris: J. Mater. Sci. Technology, 2016, vol. 32(11), 1083–97.

  44. L Ratke, A Müller, M Seifert, and G Kapserovich: Mater. Sci. For., 2010, vol. 649, pp. 137–42.

    Google Scholar 

  45. G Phanikumar, P Dutta, R Galun, and K Chattopadhyay: Mater. Sci. Eng. A, 2004, vol. 371, pp. 91–102.

    Article  Google Scholar 

  46. AK Prasada, K Das, BS Murty, and M Chakraborty: Wear, 2004, vol. 257, pp. 148–53.

    Article  Google Scholar 

  47. GC Yuan, ZJ Li, YX Lou, and XM Zhang: Mater. Sci. Eng. A, 2000, vol. 280, pp. 108–15.

    Article  Google Scholar 

  48. W Kurz and JD Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  Google Scholar 

  49. D Bouchard, and JS Kirkaldy: Metall. Mater. Trans. B, 1997, vol. 28, pp. 651–63.

    Article  Google Scholar 

  50. F Sá, OL Rocha, CA Siqueira, A Garcia: Mater. Sci. Eng. A, 2004, vol. 373, pp. 131–38.

    Article  Google Scholar 

  51. DM Rosa, JE Spinelli, A Garcia: Mater. Let., 2006, vol. 60, pp. 1871-74.

    Article  Google Scholar 

  52. C Brito, TA. Costa, TA Vida, F Bertelli, N Cheung, JE Spinelli, and A Garcia: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3342–55.

  53. C Brito, G Reinhart, H Nguyen-Thib, N.Mangelinck-Noël, N.Cheung, JE Spinelli, A Garcia: J. Alloys Compod., 2015, vol. 636, pp. 145–49.

    Article  Google Scholar 

  54. Q Sun, H Jiang, J Zhao, and J He, Acta Mater., 2017, vol. 129, pp. 321-330.

    Article  Google Scholar 

  55. T Costa, ES Freitas, M Dias, C Brito, N Cheung, and A Garcia: J. Alloys Compd., 2015, vol. 653, pp. 243-254.

    Article  Google Scholar 

  56. TA Costa, M Dias, ES Freitas, LC Casteletti, and A Garcia: J. Alloys Compd., 2016, vol. 689, pp. 767-776.

    Article  Google Scholar 

  57. I Rosales, G Gonzalez-Rodriguez, J L Gama, R Guardian. Mater. Sci. Applic., 2014, vol.5, pp.330-337.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by IFPA - Federal Institute of Education, Science and Technology of Pará, UFPA - Federal University of Pará, and CNPq - The Brazilian Research Council (Grants 302846/2017-4) and CAPES - Coordination of Superior Level Staff Improvement, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio L. Rocha.

Additional information

Manuscript submitted February 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, H.M., Machado, G.H., Barbosa, C.R. et al. Microstructural Development of an AlNiBi Alloy and Influence of the Transient Horizontal Solidification Parameters on Microhardness. Metall Mater Trans A 49, 4722–4734 (2018). https://doi.org/10.1007/s11661-018-4747-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4747-4

Navigation