Skip to main content
Log in

A Mechanism Leading to γ′ Precipitates with {111} Facets and Unusual Orientation Relationships to the Matrix in γ–γ′ Nickel-Based Superalloys

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cast-and-wrought heavily alloyed γ–γ′ nickel-based superalloys may exhibit large recovered grains inherited from the ingot conversion and characterized by a high density of close-to-coherent micrometric γ′ precipitates. In the AD730™ nickel-based superalloy, a previous work (Vernier et al. Scr Mater 153:10–13, 2018) highlighted a new interaction between such precipitates and a recrystallization front passing through. This interaction resulted in γ′ precipitates with a close-to-twin orientation relationship to their recrystallized host grain. Called T-type precipitates, they were revealed to be {111} bounded plate-like particles. The present paper aims to clarify the mechanism whereby such precipitates form. The formation of T-type precipitates actually is part of a more global mechanism which also produces γ′ precipitates slightly misoriented from their surrounding matrix (C-type precipitates) and of same size and morphology as T-type precipitates. Both T- and C-type precipitates display {111} facets and are evidenced in the AD730™, René65, and PER72 alloys, supporting the idea that the mechanism can more generally occur in all low-lattice-mismatch γ–γ′ nickel-based superalloys. Finally, a scenario is proposed: T/C-type precipitates form at the recrystallization front of grains sharing a 〈111〉 axis with the recovered grain they consume, and develop {111} facets and specific orientations which minimize the interfacial energy on both recrystallized and recovered sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–17.

    Article  Google Scholar 

  2. R.C. Reed: The Superalloys, Fundamentals and Applications, Cambridge University Press, 2006.

    Book  Google Scholar 

  3. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588–603.

    Article  Google Scholar 

  4. P.A. Manohar and F. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–24.

    Article  Google Scholar 

  5. F.C. Campbell: Elements of Metallurgy and Engineering Alloys, ASM International, Materials Park, 2008.

    Google Scholar 

  6. G.S. Rohrer: J. Mater. Sci., 2011, 46, pp. 5881–95.

    Article  Google Scholar 

  7. V. Randle and B. Ralph: Acta Metall., 1986, vol. 34, pp. 891–8.

    Article  Google Scholar 

  8. R.D. Doherty: Met. Sci., 1982, vol. 16, pp. 1–13.

    Article  Google Scholar 

  9. E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  Google Scholar 

  10. R.W. Cahn and P. Haasen: Physical Metallurgy, Volume I, North Holland, Amsterdam, 1996.

    Google Scholar 

  11. A. Porter and B. Ralph: J. Mater. Sci., 1981, vol. 16, pp. 707–13.

    Article  Google Scholar 

  12. M.A. Charpagne, P. Vennéguès, T. Billot, J.M. Franchet, and N. Bozzolo: J. Microsc., 2016, vol. 263, pp. 106–12.

    Article  Google Scholar 

  13. M. Charpagne, T. Billot, J. Franchet, and N. Bozzolo: Superalloys 2016, 2016, pp. 417–26.

    Google Scholar 

  14. M.A. Charpagne, T. Billot, J.M. Franchet, and N. Bozzolo: J. Alloys Compd., 2016, vol. 688, pp. 685–94.

    Article  Google Scholar 

  15. B.J. Bond, C.M.O. Brien, J.L. Russell, J.A. Heaney, and M.L. Lasonde: 8th International Symposium on Superalloy 718 Derivatives, 2014, pp. 107–18.

  16. R.S. Minisandram, L.A. Jackman, J.L. Russell, M.L. Lasonde, J.A. Heaney, and A.M. Powell: 8th International Symposium on Superalloy 718 Derivatives, 2014, pp. 95–105.

  17. C. Crozet, A. Devaux, R. Forestier, S. Charmond, M. Hueller, D. Helm, and W. Buchmann: Superalloys 2016 Proceedings of the 13th International Symposium on Superalloys, 2016, pp. 437–46.

  18. S. Vernier, J.-M. Franchet, C. Dumont, P. Vennéguès, and N. Bozzolo: Scr. Mater., 2018, vol. 153, pp. 10–13.

    Article  Google Scholar 

  19. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  Google Scholar 

  20. R.A. Ricks, A.J. Porter, and R.C. Ecob: Acta Metall., 1983, vol. 31, pp. 43–53.

    Article  Google Scholar 

  21. G. Nolze and R. Hielscher: J. Appl. Crystallogr., 2016, vol. 49, pp. 1786–1802.

    Article  Google Scholar 

  22. J. Humphreys, G.S. Rohrer, and A. Rollett: Recrystallization and Related Annealing Phenomena, 3rd edn., Elsevier Ltd, New York, 2017.

    Google Scholar 

  23. Y. Huang and F.J. Humphreys: Mater. Chem. Phys., 2012, vol. 132, pp. 166–74.

    Article  Google Scholar 

  24. D.L. Olmsted, S.M. Foiles, and E.A. Holm: Acta Mater., 2009, vol. 57, pp. 3694–703.

    Article  Google Scholar 

  25. A.G. Khachaturyan, S. V. Semenovskaya, and J.W. Morris: Acta Metall., 1988, vol. 36, pp. 1563–72.

    Article  Google Scholar 

  26. S.J. Yeom, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 1975–81.

    Article  Google Scholar 

  27. B.B. Straumal, O.A. Kogtenkova, A.S. Gornakova, V.G. Sursaeva, and B. Baretzky: J. Mater. Sci., 2015, vol. 51, pp. 382–404.

    Article  Google Scholar 

  28. B.B. Straumal, S.A. Polyakov, E. Bischoff, W. Gust, and E.J. Mittemeijer: Interface Sci., 2001, vol. 9, pp. 287–92.

    Article  Google Scholar 

  29. S.P. Ringer, W.B. Li, and K.E. Easterling: Acta Metall., 1989, vol. 37, pp. 831–41.

    Article  Google Scholar 

  30. R.W. Balluffi: Phys. Status Solidi, 1970, vol. 11, pp. 11–34.

    Article  Google Scholar 

  31. A. Devaux, B. Picqué, M.F. Gervais, E. Georges, T. Poulain, and P. Héritier: Superalloys 2012, 2012, pp. 911–19.

    Article  Google Scholar 

  32. H. Grimmer, W. Bollmann, and D.H. Warrington: Acta Crystallogr. Sect. A, 1974, vol. 30, pp. 197–207.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support of the ANR-Safran industrial chair OPALE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Vernier.

Additional information

Manuscript submitted March 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernier, S., Franchet, JM., Dumont, C. et al. A Mechanism Leading to γ′ Precipitates with {111} Facets and Unusual Orientation Relationships to the Matrix in γ–γ′ Nickel-Based Superalloys. Metall Mater Trans A 49, 4308–4323 (2018). https://doi.org/10.1007/s11661-018-4734-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4734-9

Navigation