Skip to main content
Log in

Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present work, the influence of strain path on the evolution of microstructure, crystallographic texture, and magnetic properties of a two-phase Fe-Cr-Ni alloy was investigated. The Fe-Cr-Ni alloy had nearly equal proportion of austenite and ferrite and was cold rolled up to a true strain of 1.6 (thickness reduction) using two different strain paths—unidirectional rolling and multi-step cross rolling. The microstructures were characterized by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), while crystallographic textures were determined using X-ray diffraction. For magnetic characterization, B-H loops and M-H curves were measured and magnetic force microscopy was performed. After unidirectional rolling, ferrite showed the presence of strong α-fiber (rolling direction, RD//〈110〉) and austenite showed strong brass type texture (consisting of Brass (Bs) ({110}〈112〉), Goss ({110}〈001〉), and S ({123}〈634〉)). After multi-step cross rolling, strong rotated cube ({100}〈110〉) was developed in ferrite, while austenite showed ND (normal direction) rotated brass (~ 10 deg) texture. The strain-induced martensite (SIM) was found to be higher in unidirectionally rolled samples than multi-step cross-rolled samples. The coherently diffracting domain size, micro-strain, coercivity, and core loss also showed a strong correlation with strain and strain path. More strain was partitioned into austenite than ferrite during deformation (unidirectional as well as cross rolling). Further, the strain partitioning (in both austenite and ferrite) was found to be higher in unidirectionally rolled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Gunn: Duplex Stainless Steels, Abington Publishing, Cambridge, 1997.

    Book  Google Scholar 

  2. J. Charles: Steel Res. Int., 2008, vol. 79, pp. 455–65.

    Article  Google Scholar 

  3. R.K. Ray, and S. Suwas: Crystallographic Texture of Materials, Springer, Manchester, 2014.

    Google Scholar 

  4. A. Kumar, R.K. Khatirkar, D. Chalapathi, G. Kumar and S. Suwas: Metall. Mater. Trans. A, 2017, vol. 48 pp. 2349–62.

    Article  Google Scholar 

  5. W. Solano-Alvarez, H.F.G. Abreu, M.R. Da Silva and M.J. Peet: J. Magn. Magn. Mater., 2015, vol. 378, pp. 200–05.

    Article  Google Scholar 

  6. A. Kashiwar, N.P. Vennela, S.L. Kamath and R.K. Khatirkar: Mater. Charact., 2012, vol. 74, pp. 55–63.

    Article  Google Scholar 

  7. S.S.M. Tavares, J.M. Pardal, M.R. da Silva and C.A.S. de Oliveira: Mater. Res., 2014, vol. 17, pp. 381–85.

    Article  Google Scholar 

  8. P.L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86.

    Article  Google Scholar 

  9. K. Spencer: The Work Hardening of Austenitic Stainless Steel, Applied to the Fabrication of High-Strength Conductors, McMaster University, Hamilton, 2004.

    Google Scholar 

  10. M. Breda, K. Brunelli, F. Grazzi, A. Scherillo and I. Calliari: Metall. Mater. Trans. A, 2014, vol. 46, pp. 577–86.

    Google Scholar 

  11. D.C.T. Costa, M.C. Cardoso, G.S. da Fonseca, L.P. Moreira, M. Martiny and S. Mercier: Mater. Sci. Forum., 2016, vol. 869, pp. 490–96.

    Article  Google Scholar 

  12. S. Pramanik, S. Bera, and S.K. Ghosh: Steel Res. Int., 2014, vol. 85, pp. 776–83.

    Article  Google Scholar 

  13. J. Niagaj and Ł. Mazur: Arch. Metall. Mater., 2012, vol. 57, pp. 16–18.

    Google Scholar 

  14. J. Talonen and H. Hanninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  Google Scholar 

  15. B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Company Inc., Boston, 1978.

    Google Scholar 

  16. T.J.A. Reis, J.R.G. Carneiro, J.M.C. Vilela, and M.S. Andrade: Identification Of Strain-Induced Martensite Phase In Drawn Austenitic Stainless Steels With SPM Techniques, 2014.

  17. A. Dias and M.S. Andrade: Appl. Surf. Sci., 2000, vol. 161 pp. 109–14.

    Article  Google Scholar 

  18. B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials,Wiley, Hoboken, NJ, 2009.

    Google Scholar 

  19. C.W. Chen: Magnetism and Metallurgy of Soft Magnetic Materials, Vol. 15, North-Holland Publishing Company, New York, 1977.

    Google Scholar 

  20. S. Baldo and I. Mészáros: J. Mater. Sci., 2010,vol. 45, pp. 5339–46.

    Article  Google Scholar 

  21. C. Donadille, R. Valle, P. Dervin, and R. Penelle: Acta Metall., 1989, vol. 37, pp. 1547–71.

    Article  Google Scholar 

  22. T. Leffers and R.K. Ray: ProgrMater. Sci., 2009, vol. 54, pp. 351–96.

    Article  Google Scholar 

  23. R. Madhavan, R.K. Ray and S. Suwas: Acta Mater., 2014, vol. 78, pp. 222–35.

    Article  Google Scholar 

  24. N. Jia, R.L. Peng, Y.D. Wang and X. Zhao: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3615–24.

    Article  Google Scholar 

  25. R. Madhavan, R.K. Ray and S. Suwas: Philos. Mag., 2016, vol. 96, pp. 3177-99.

    Article  Google Scholar 

  26. T. Leffers and D.J. Jensen: Textures Microstruct., 1988, vol. 8, pp. 467–80.

    Article  Google Scholar 

  27. G. Wassermann: Z. Met., 1963, vol. 54, pp. 61–65.

    Google Scholar 

  28. W. B. Hutchinson, B.J. Duggan and M. Hatherly: Met. Technol., 1979, vol. 6, pp. 398–03.

    Article  Google Scholar 

  29. K. Wierzbanowski, M. Wroński and T. Leffers: Crit. Rev. Solid State Mater. Sci., 2014, vol. 39, pp. 391–22.

    Article  Google Scholar 

  30. B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield: Met. Sci., 1978, vol. 12, pp. 343–51.

    Article  Google Scholar 

  31. A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu and S. Suwas: Philos. Mag., 2017, Vol. 97, No. 23, pp. 1939–62.

    Article  Google Scholar 

  32. S.R. Kalidindi, R.D. Doherty and C. Necker: Acta Mater., 2000, vol. 48, pp. 2665–73.

    Article  Google Scholar 

  33. S.R. Kalidindi: Int. J. Plast., 2001, vol. 17, pp. 837–60.

    Article  Google Scholar 

  34. N. Jia, F. Roters, P. Eisenlohr, C. Kords and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1099–1115.

    Article  Google Scholar 

  35. L. Anand and C. Su: J. Mech. Phys. Solids., 2005, vol. 53, pp. 1362–96.

    Article  Google Scholar 

  36. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2015.

    Google Scholar 

  37. A. Belyakov, Y. Kimura, and K. Tsuzaki: Acta Mater., 2006, vol. 54, pp. 2521–32.

    Article  Google Scholar 

  38. S. Suwas and A.K. Singh: Mater. Sci. Eng. A, 2003, vol. 356, pp. 368–71.

    Article  Google Scholar 

  39. S. Chhann, D. Solas, A.L. Etter, R. Penelle and T. Baudin: Mater. Sci. Forum., 2007, vol. 550, pp. 551–56.

    Article  Google Scholar 

  40. J. Sidor, A. Miroux, R. Petrov and L. Kestens: Acta Mater., 2008, vol. 56, pp. 2495–07.

    Article  Google Scholar 

  41. P.P. Bhattacharjee, M. Zaid, G.D. Sathiaraj, and B. Bhadak: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2180–91.

    Article  Google Scholar 

  42. J.P. Davim: Modern Manufacturing Engineering, Springer Int. Publis., Switzerland, 2011.

    Google Scholar 

  43. M.S.J. Hashmi, Comprehensive materials processing, Elsevier, Oxford, 2013.

    Google Scholar 

  44. J.J. Moverare and M. Odeń: Mater. Sci. Eng. A, 2002, vol. 337 pp. 25–38.

    Article  Google Scholar 

  45. S. Suwas, A.K. Singh, K.N. Rao and T. Singh: Z. Met., 2002, vol. 93 pp. 1313–19.

    Google Scholar 

  46. N.P. Gurao, S. Sethuraman and S. Suwas: Mater. Sci. Eng. A, 2011, vol. 528, pp 7739–50.

    Article  Google Scholar 

  47. P.P. Bhattacharjee, S. Saha and J.R. Gatti: J. Mater. Eng. Perform., 2014, vol. 23, pp. 458–68.

    Article  Google Scholar 

  48. L. Kestens and S. Jacobs: Stress. Microstruct., 2008, vol. 2008, pp 1-9.

    Article  Google Scholar 

  49. C.G. Oertel, I. Hünsche, W. Skrotzki, A. Lorich, W. Knabl, J. Resch and Th. Trenkwalder: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 722–27.

    Article  Google Scholar 

  50. S. Wronski, M. Wrobel, A. Baczmanski and K. Wierzbanowski: Mater. Charact., 2013, vol. 77 pp. 116–26.

    Article  Google Scholar 

  51. R. Garg, S. Ranganathan, and S. Suwas: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4582–92.

    Article  Google Scholar 

  52. M. Zaid and P.P. Bhattacharjee: Mater. Charact., 2014, vol. 96, pp. 263–72.

    Article  Google Scholar 

  53. A. Bocker, H. Klein and H.J. Bunge: Textures Microstruct., 1990, vol. 12, pp. 155–74.

    Article  Google Scholar 

  54. G.F. Vander Voort and W. Baldwin: Metallography and Microstructures Handbook, ASM Int., Novelty, USA, vol. 9, 2004.

    Google Scholar 

  55. OIM: Analysis Version 7.2. User Manual, TexSEM Laboratories Inc., Draper, 2013.

    Google Scholar 

  56. A.J. Schwartz, M. Kumar, A.L. Adams, and D.P. Field: Electron Backscatter Diffraction in Materials Science, Kluwer Academic/Plenum Publishers, Springer, New York, 2000.

    Book  Google Scholar 

  57. F. Xlongt and B.A. Parker: Textures Microstruct., 1984, vol. 6, pp. 125–35.

    Article  Google Scholar 

  58. P. Van Houtte: The ‘‘MTM-FHM’’ Software System Version 2, 2009.

  59. R.K. Khatirkar and B.S. Murty: Mater. Chem. Phys., 2010, vol. 123, pp. 247–53.

    Article  Google Scholar 

  60. M. Kumagai, M. Imafuku and S. Ohya: ISIJ Int., 2014, vol. 54, pp. 206–11.

    Article  Google Scholar 

  61. R. Unnikrishnan, A. Kumar, R.K. Khatirkar, S.K. Shekhawat and S.G. Sapate: Mater. Chem. Phys., 2016, vol 183, pp. 339–48.

    Article  Google Scholar 

  62. H.J. Bunge : Texture Cryst. Solids, 1989, vol. 11, pp. 75–91.

    Google Scholar 

  63. R. Ranjan, D.C. Jiles and P. Rastogi: IEEE Trans. Magn., 1987, vol.23, pp. 1869–76.

    Article  Google Scholar 

  64. R. Madhavan and S. Suwas: Acta Mater., 2016, vol. 121, pp. 46–58.

    Article  Google Scholar 

  65. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp 178–90.

    Article  Google Scholar 

  66. S.S.M. Tavares, J.M. Neto, M.R. da Silva, I.F. Vasconcelos and H.F.G. de Abreu: Mater. Charact., 2008, vol. 59, pp. 901–04.

    Article  Google Scholar 

  67. J. Tobisch and A. Mucklich: Texture, 1974, vol. 1, pp. 211–31.

    Article  Google Scholar 

  68. H. Hu and R.S. Cline: J. Appl. Phys.,1961, vol. 32, pp. 760–63.

    Article  Google Scholar 

  69. N. Jia, P. Eisenlohr, F. Roters, D. Raabe and X. Zhao: Acta Mater., 2012, vol. 60, pp. 3415–34.

    Article  Google Scholar 

  70. R. Garg, N.P. Gurao, S. Ranganathan and S. Suwas: Philos. Mag., 2011, vol. 91, pp. 4089–08.

    Article  Google Scholar 

  71. J. Mishra, S. Sahni, R. Sabat, V.D. Hiwarkar and S.H. Sahoo: Mater. Res., 2016, vol. 20, pp. 218-24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, VNIT Nagpur for his constant encouragement to publish this paper. The authors acknowledge the use of ‘National Facility of Texture & OIM (a DST-IRPHA facility)’ for EBSD and bulk texture measurements. The authors also acknowledge the use of ‘Centre for Nano Science and Engineering (CeNSE), IISc Bangalore’, for MFM measurements. One of the authors RKK wishes to acknowledge Science and Engineering Research Board (SERB) for financial assistance (Grant No. SB/FTP/ETA-0188/2014) to carry out this work. RKK also wishes to acknowledge University Grant Commission’s Networking Resource Centre for Materials (UGC-NRCM) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Additional information

Manuscript submitted September 2, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Khatirkar, R.K., Gupta, A. et al. Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy. Metall Mater Trans A 49, 3402–3418 (2018). https://doi.org/10.1007/s11661-018-4714-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4714-0

Navigation