Skip to main content
Log in

Geometrically Necessary Dislocation Density Evolution in Interstitial Free Steel at Small Plastic Strains

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Measurement of geometrically necessary dislocation (GND) density using electron backscatter diffraction (EBSD) has become rather common place in modern metallurgical research. The utility of this measure as an indicator of the expected flow behavior of the material is not obvious. Incorporation of total dislocation density into the Taylor equation relating flow stress to dislocation density is generally accepted, but this does not automatically extend to a similar relationship for the GND density. This is discussed in the present work using classical equations for isotropic metal plasticity in a rather straight-forward theoretical framework. This investigation examines the development of GND structure in a commercially produced interstitial free steel subject to tensile deformation. Quantification of GND density was carried out using conventional EBSD at various strain levels on the surface of a standard dog-bone-shaped tensile specimen. There is linear increase of the average GND density with imposed macroscopic strain. This is in agreement with the established framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. J.F. Nye: Acta Metall., 1953, vol.1, pp.153–162.

    Article  Google Scholar 

  2. B.A. Bilby, R. Bullough, E. Smith: Proc. R. Soc. Lond., 1955, vol. 231 (1185), pp. 263–273.

    Article  Google Scholar 

  3. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399–424.

    Article  Google Scholar 

  4. E.Kröner: Continuum Theory of Defects, in: R.Balian, M. Kléman, and J.-P. Poirier, eds., Physics of Defects, North-Holland, Amsterdam, 1981, pp. 217–315.

    Google Scholar 

  5. S. Sun, B. Adams, and W. King: Philosophical Magazine A., 2000, vol. 80, pp. 9–25.

    Article  Google Scholar 

  6. D.P. Field, P.B. Trivedi, S.I. Wright and M. Kumar: Ultramicroscopy, 2005, vol. 103, pp. 33-39.

    Article  Google Scholar 

  7. W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994-997.

    Article  Google Scholar 

  8. T.B. Britton, A.J. Wilkinson: Ultramicroscopy,2011, vol. 111, pp. 1395–1404.

    Article  Google Scholar 

  9. D.P. Field, C.C. Merriman, N. Allain-Bonasso and F. Wagner: Model. Simul. Mater. Sci. Eng., 2012, vol.20, pp. 1-12.

    Article  Google Scholar 

  10. T.J. Ruggles, D.T. Fullwood: Ultramicroscopy, 2013, vol. 133, pp. 8–15.

    Article  Google Scholar 

  11. P.J.Konijnenberg, S. Zaefferer, and D. Raabe: ActaMater.,2015, vol. 99, pp. 402-414.

    Article  Google Scholar 

  12. B.C. Larson, J.Z.Tischler, A. El-Azab, and W.J. Liu: J. Eng. Mats. Tech., 2008, vol. 130, pp. 1 - 10.

    Article  Google Scholar 

  13. B. S. El-Dasher, B. L. Adams and A. D. Rollett: Scr. Mater., 2003, vol. 48, pp. 141-145.

    Article  Google Scholar 

  14. A. J. Wilkinson, G. Meaden, D. J. Dingley: Ultramicroscopy, 2006, vol. 106, pp. 307-313.

    Article  Google Scholar 

  15. J. Kacher, C. Landon, B.L. Adams, D. Fullwood: Ultramicroscopy,2009, vol. 109, pp. 1148-1156.

    Article  Google Scholar 

  16. S. Villert, C. Maurice, C. Wyon, R. Fortunier: J. Microsc., 2009, vol. 233, pp. 290-301.

    Article  Google Scholar 

  17. T. B. Britton, C. Maurice, R. Fortunier, J. H. Driver, A. P. Day, G. Meaden, D. J. Dingley, K. Mingard, A. J. Wilkinson:Ultramicroscopy,2010, vol. 110, pp. 1443-1453.

    Article  Google Scholar 

  18. J. Jiang, T.B. Britton, A.J. Wilkinson: ActaMater.,2013, vol. 61, pp.7227–7239.

    Article  Google Scholar 

  19. T. J. Hardin, B. L. Adams, D. T. Fullwood, R. H. Wagoner, E. R. Homer: International Journal of Plasticity,2013, vol. 50, pp. 146-157.

    Article  Google Scholar 

  20. W. Pantleon: ActaMater.,1998, vol. 46, pp.451–456.

    Article  Google Scholar 

  21. G. Nolze, R. Hielscher, A. Winkelmann: Cryst. Res. Technol., 2017, vol. 52, pp. 1-22.

    Article  Google Scholar 

  22. S. S. Hazra, A. A. Gazder, E. V. Pereloma:Mater. Sci. Eng. A, 2009, vol.524, pp. 158-167.

    Article  Google Scholar 

  23. J. H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–290.

    Google Scholar 

  24. Q.Z. Chen, B.J. Duggan: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3423–3430.

    Article  Google Scholar 

  25. Y. Tomota, P. Lukas, S. Harjo, J H. Park, N. Tsuchida, D. Neov:Acta Mater., 2003, vol. 51, pp. 819–830.

    Article  Google Scholar 

  26. N. Allain-Bonasso, F. Wagner, S. Berbenni, D. P. Field:Mater SciEngg A.,2012, vol. 548, pp. 56-63.

    Article  Google Scholar 

  27. A. Kundu and D. P. Field: Mater. Sci. Eng. A, 2016, vol. 667, pp.435–443.

    Article  Google Scholar 

  28. L.S. Toth, C.F. Gu, B. Beausir, J.-J. Fundenberger, M. Hoffman: Acta Materialia, 2016, vol. 117, pp. 35-42.

    Article  Google Scholar 

  29. N. Zhang, W. Tong: Int. J. of Plasticity,2004, vol. 20, pp. 523–542.

    Article  Google Scholar 

  30. P.Littlewood,A.J.Wilkinson: ActaMater.,2012, vol. 60, pp. 5516–5525.

    Article  Google Scholar 

  31. J. Kadkhodapour, S. Schmauder, D. Raabe, S. ZiaeiRad, U. Weber, M. Calcagnotto: ActaMater.,2011, vol. 59, pp. 4387–4394.

    Article  Google Scholar 

  32. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–2746.

    Article  Google Scholar 

  33. D. J. Prior: Journal of Microscopy,1999, vol. 195, pp. 217-225.

    Article  Google Scholar 

  34. C. C. Merriman, D. P. Field and P. B. Trivedi:Mater. Sci. Eng. A,2008, vol.494, pp. 28-35.

    Article  Google Scholar 

  35. M. Kamaya, A. J. Wilkinson, and J. M.Titchmarsh: Acta Mater.,2006, vol. 54, pp. 539-548.

    Article  Google Scholar 

  36. M.B. Saada, N. Gey, B. Beausir, X. Iltis, H. Mansour and N. Maloufi: Materials Characterization, 2017, vol. 133, pp. 112-121.

    Article  Google Scholar 

  37. M. Kamaya, K.Kubushiro, Y.Sakakibara, S. Suzuki, H. Morita, R. Yoda, D. Kobayashi, K. Yamagiwa, T. Nishioka, Y. Yamazaki, Y. Kamada, T. Hanada and T. Ohtani: Bulletin of the JSME,2016, vol. 3, pp. 1-15.

    Google Scholar 

  38. D. N. Githinji, S.Northover, P. J. Bouchard, and M. A. Rist: Metall. Mater. Trans A, 2013, vol. 44A, pp. 4150-4167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kundu.

Additional information

Manuscript submitted October 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Field, D.P. Geometrically Necessary Dislocation Density Evolution in Interstitial Free Steel at Small Plastic Strains. Metall Mater Trans A 49, 3274–3282 (2018). https://doi.org/10.1007/s11661-018-4693-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4693-1

Navigation